Skip to main content
Log in

The Modified Exenatide Microspheres: PLGA-PEG-PLGA Gel and Zinc-Exenatide Complex Synergistically Reduce Burst Release and Shorten Platform Stage

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The existing exenatide microspheres have the problem of burst release in the early stage, and minimal release in the middle stage which makes it difficult to achieve effective blood drug concentration (platform period). In this study, the modified exenatide microspheres were constructed to address the aforementioned issues. Poly(D,L-lactic-co-glycolic acid) (PLGA) and triblock copolymer with sol-gel conversion characteristics (PLGA-PEG-PLGA gel) were introduced as carriers to prepare microspheres. The hot gel characteristics and hydrophilicity of PLGA-PEG-PLGA gel were utilized to decline the burst release and shorten the platform period. Simultaneously, zinc acetate and exenatide were combined to generate an insoluble complex to further reduce the burst release. Herein, we prepared three types of exenatide microspheres using the solvent evaporation method and investigated their characterization as well as in vitro and in vivo release. According to the experimental findings, the modified exenatide microspheres, i.e., PLGA-PEG-PLGA gel and PLGA co-loaded zinc-exenatide insoluble complex microspheres (Zn-EXT-Gel-MS), had smooth and rounded surfaces, with a particle size of 24.7 μm, and the encapsulation rate reached 89.43%. And it was released for 40 days in vitro, behaving better than the other two microspheres in terms of release behavior. When this product was administered subcutaneously to rats, it produced a comparatively constant plasma exenatide concentration that lasted for 24 days and superior bioavailability than the exenatide microspheres (EXT-MS). The creation of modified exenatide microspheres may serve as a heuristic method for other long-acting medications.

Graphical Abstract

Schematic diagram of the synthesis process and release curves of three types of exenatide microspheres in vitro and in vivo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Mikhail N. Exenatide: a novel approach for treatment of type 2 diabetes. Southern Med J. 2006;99(11):1271–9. https://doi.org/10.1097/01.smj.0000240730.86237.b6.

    Article  PubMed  Google Scholar 

  2. Exenatide Barnett A. Exp Opinion Pharmacotherap. 2007;8(15):2593–608. https://doi.org/10.1517/14656566.8.15.2593.

    Article  CAS  Google Scholar 

  3. Yoo BK, Triller DM, Yoo DJ. Exenatide: a new option for the treatment of type 2 diabetes. Annals Pharmacotherap. 2006;40(10):1777–84. https://doi.org/10.1345/aph.1H060.

    Article  CAS  Google Scholar 

  4. Kong JH, Oh EJ, Chae SY, Lee KC, Hahn SK. Long acting hyaluronate–exendin 4 conjugate for the treatment of type 2 diabetes. Biomater. 2010;31(14):4121–8. https://doi.org/10.1016/j.biomaterials.2010.01.091.

    Article  CAS  Google Scholar 

  5. Xuan J, Lin Y, Huang J, Yuan F, Li X, Lu Y, et al. Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats. Peptides. 2013;46:172–9. https://doi.org/10.1016/j.peptides.2013.06.005.

    Article  PubMed  CAS  Google Scholar 

  6. Dong N, Zhu C, Jiang J, Huang D, Li X, Quan G, et al. Development of composite PLGA microspheres containing exenatide-encapsulated lecithin nanoparticles for sustained drug release. Asian J Pharmaceut Sci. 2020;15(3):347–55. https://doi.org/10.1016/j.ajps.2019.01.002.

    Article  Google Scholar 

  7. Li K, Yu L, Liu X, Chen C, Chen Q, Ding J. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials. 2013;34(11):2834–42. https://doi.org/10.1016/j.biomaterials.2013.01.013.

    Article  PubMed  CAS  Google Scholar 

  8. Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021;128:42–59. https://doi.org/10.1016/j.actbio.2021.04.009.

    Article  PubMed  CAS  Google Scholar 

  9. Rosenstock J, Buse JB, Azeem R, Prabhakar P, Kjems L, Huang H, et al. Efficacy and safety of ITCA 650, a novel drug-device GLP-1 receptor agonist, in type 2 diabetes uncontrolled with oral antidiabetes drugs: the FREEDOM-1 Trial. Diabetes Care. 2018;41(2):333–40. https://doi.org/10.2337/dc17-1306.

    Article  PubMed  CAS  Google Scholar 

  10. Wilkins E, Atanasov P, Muggenburg BA. Integrated implantable device for long-term glucose monitoring. Biosens Bioelectron. 1995;10(5):485–94. https://doi.org/10.1016/0956-5663(95)96894-5.

    Article  PubMed  CAS  Google Scholar 

  11. Gong N, Ma AN, Zhang LJ, Luo XS, Zhang YH, Xu M, et al. Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. British J Pharmacol. 2011;163(2):399–412. https://doi.org/10.1111/j.1476-5381.2011.01227.x.

    Article  CAS  Google Scholar 

  12. Ginn C, Khalili H, Lever R, Brocchini S. PEGylation and its impact on the design of new protein-based medicines. Future Med Chem. 2014;6(16):1829–46. https://doi.org/10.4155/fmc.14.125.

    Article  PubMed  CAS  Google Scholar 

  13. Liu H, Wang B, Xing M, Meng F, Zhang S, Yang G, et al. Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. Int J Pharm. 2023;636: 122863. https://doi.org/10.1016/j.ijpharm.2023.122863.

    Article  PubMed  CAS  Google Scholar 

  14. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. (2019) Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 109:1249-58. https://doi.org/10.1016/j.biopha.2018.10.078.

  15. Wan B, Bao Q, Burgess D. Long-acting PLGA microspheres: advances in excipient and product analysis toward improved product understanding. Adv Drug Deliv Rev. 2023;198:114857. https://doi.org/10.1016/j.addr.2023.114857.

    Article  PubMed  CAS  Google Scholar 

  16. Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28(1):1397–418. https://doi.org/10.1080/10717544.2021.1938756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Scott LJ. Exenatide extended-release: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72(12):1679–707. https://doi.org/10.2165/11209750-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  18. DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P. Encapsulation of exenatide in poly-(D, L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Therapeut. 2011;13(11):1145–54. https://doi.org/10.1089/dia.2011.0050.

    Article  CAS  Google Scholar 

  19. Liu B, Dong Q, Wang M, Shi L, Wu Y, Yu X, et al. Preparation, characterization, and pharmacodynamics of exenatide-loaded poly(DL-lactic-co-glycolic acid) microspheres. Chem Pharmaceu Bull. 2010;58(11):1474–9. https://doi.org/10.1248/cpb.58.1474.

    Article  CAS  Google Scholar 

  20. Chandrashekar A, Beig A, Wang Y, Schwendeman SP. In vitro performance of composition-equivalent PLGA microspheres encapsulating exenatide acetate by solvent evaporation. Int J Pharm. 2023;643: 123213. https://doi.org/10.1016/j.ijpharm.2023.123213.

    Article  PubMed  CAS  Google Scholar 

  21. Fu K, Harrell R, Zinski K, Um C, Jaklenec A, Frazier J, et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J Pharm Sci. 2003;92(8):1582–91. https://doi.org/10.1002/jps.10414.

    Article  PubMed  CAS  Google Scholar 

  22. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41. https://doi.org/10.1016/s0142-9612(00)00178-2.

    Article  PubMed  CAS  Google Scholar 

  23. Shi M, Yang YY, Chaw CS, Goh SH, Moochhala SM, Ng S, et al. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J Control Release. 2003;89(2):167–77. https://doi.org/10.1016/s0168-3659(02)00493-5.

    Article  PubMed  CAS  Google Scholar 

  24. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  PubMed  CAS  Google Scholar 

  25. Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm. 2007;334(1–2):137–48. https://doi.org/10.1016/j.ijpharm.2006.10.036.

    Article  PubMed  CAS  Google Scholar 

  26. Qi F, Wu J, Yang T, Ma G, Su Z. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater. 2014;10(10):4247–56. https://doi.org/10.1016/j.actbio.2014.06.018.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, Xia, Yang, Hua, Lili, Ziyi, et al. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J Drug Deliv Sci Tec. 2018;45:346-56. https://doi.org/10.1016/j.jddst.2018.03.024.

  28. Ge Y, Hu Z, Chen J, Qin Y, Wu F, Jin T. Exenatide microspheres for monthly controlled-release aided by magnesium hydroxide. Pharmaceutics. 2021;13(6). https://doi.org/10.3390/pharmaceutics13060816.

  29. Park H, Ha DH, Ha ES, Kim JS, Kim MS, Hwang SJ. Effect of stabilizers on encapsulation efficiency and release behavior of exenatide-loaded PLGA microsphere prepared by the W/O/W solvent evaporation method. Pharmaceutics. 2019;11(12). https://doi.org/10.3390/pharmaceutics11120627.

  30. Zhai J, Ou Z, Zhong L, Wang YE, Cao LP, Guan S. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics. Drug Deliv. 2020;27(1):1667–75. https://doi.org/10.1080/10717544.2020.1850919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release. 2001;72(1–3):203–15. https://doi.org/10.1016/s0168-3659(01)00276-0.

    Article  PubMed  CAS  Google Scholar 

  32. Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm. 2008;348(1–2):95–106. https://doi.org/10.1016/j.ijpharm.2007.07.026.

    Article  PubMed  CAS  Google Scholar 

  33. Choi S, Baudys M, Kim SW. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm Res. 2004;21(5):827–31. https://doi.org/10.1023/b:pham.0000026435.27086.94.

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Jiang GQ, Ding FX. Effects of polymer degradation on drug release from PLGA-mPEG microparticles: a dynamic study of microparticle morphological and physicochemical properties. J Appli Polymer Sci. 2008;108(4):2458–66. https://doi.org/10.1002/app.27823.

    Article  CAS  Google Scholar 

  35. Mustafa S, Devi VK, Pai RS. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Delivery Trans Res. 2017;7(1):27–36. https://doi.org/10.1007/s13346-016-0326-7.

    Article  CAS  Google Scholar 

  36. Wang P, Wang Q, Ren T, Gong H, Gou J, Zhang Y, et al. Effects of Pluronic F127-PEG multi-gel-core on the release profile and pharmacodynamics of Exenatide loaded in PLGA microspheres. Colloids Surfaces B, Biointerfaces. 2016;147:360–7. https://doi.org/10.1016/j.colsurfb.2016.08.032.

    Article  PubMed  CAS  Google Scholar 

  37. Wang P, Zhuo X, Chu W, Tang X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int J Pharm. 2017;528(1–2):62–75. https://doi.org/10.1016/j.ijpharm.2017.05.069.

    Article  PubMed  CAS  Google Scholar 

  38. Cai C, Mao S, Germershaus O, Schaper A, Rytting E, Chen D, et al. Influence of morphology and drug distribution on the release process of FITC-dextran-loaded microspheres prepared with different types of PLGA. J Microencapsul. 2009;26(4):334–45. https://doi.org/10.1080/02652040802354707.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Shi Y, Song Y, Duan D, Zhang X, Sun K, et al. Tf ligand-receptor-mediated exenatide-Zn(2+) complex oral-delivery system for penetration enhancement of exenatide. J Drug Target. 2018;26(10):931–40. https://doi.org/10.1080/1061186x.2018.1455839.

    Article  PubMed  CAS  Google Scholar 

  40. 5 - Mathematical models of drug release. In: Bruschi ML, editor. Strategies to modify the drug release from pharmaceutical systems: Woodhead Publishing; 2015. p. 63-86.

  41. Ruan S, Gu Y, Liu B, Gao H, Hu X, Hao H, et al. Long-acting release microspheres containing novel GLP-1 analog as an antidiabetic system. Molecular Pharmaceut. 2018;15(7):2857–69. https://doi.org/10.1021/acs.molpharmaceut.8b00344.

    Article  CAS  Google Scholar 

  42. Lisi GP, Hughes RP, Wilcox DE. Coordination contributions to protein stability in metal-substituted carbonic anhydrase. J Biolog Inorganic Chem: JBIC : a Publication Society Biological Inorganic Chem. 2016;21(5–6):659–67. https://doi.org/10.1007/s00775-016-1375-6.

    Article  CAS  Google Scholar 

  43. Li X, Wei Y, Lv P, Wu Y, Ogino K, Ma G. Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency. Colloids Surf A: Physicochem Eng Asp. 2019;562:237–46. https://doi.org/10.1016/j.colsurfa.2018.11.014.

  44. Siepmann J, Faisant N, Akiki J, Richard J, Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96(1):123–34. https://doi.org/10.1016/j.jconrel.2004.01.011.

    Article  PubMed  CAS  Google Scholar 

  45. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: experimental and mathematical modeling. Int J Pharm. 2018;536(1):360–9. https://doi.org/10.1016/j.ijpharm.2017.12.006.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Sun T, Zhang Y, Chaurasiya B, Huang L, Liu X, et al. Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics. Rsc Adv. 2016;6(44):37452–62. https://doi.org/10.1039/c6ra02994a.

    Article  CAS  Google Scholar 

  47. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm. 2011;415(1–2):34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.

    Article  PubMed  CAS  Google Scholar 

  48. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63. https://doi.org/10.1021/acs.chemrev.5b00346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release. 2014;190:240–53. https://doi.org/10.1016/j.jconrel.2014.05.057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang S, Feng X, Liu P, Wei Y, Xiao B. Blending of PLGA-PEG-PLGA for improving the erosion and drug release profile of PCL microspheres. Current Pharmaceut Biotechnol. 2020;21(11):1079–87. https://doi.org/10.2174/1389201021666200101104116.

    Article  CAS  Google Scholar 

  51. Duncan G, Jess TJ, Mohamed F, Price NC, Kelly SM, van der Walle CF. The influence of protein solubilisation, conformation and size on the burst release from poly(lactide-co-glycolide) microspheres. J Control Release. 2005;110(1):34–48. https://doi.org/10.1016/j.jconrel.2005.09.007.

    Article  PubMed  CAS  Google Scholar 

  52. Wang T, Zhang C, Zhong W, Yang X, Wang A, Liang R. Modification of three-phase drug release mode of octreotide PLGA microspheres by microsphere-gel composite system. Aaps Pharmscitech. 2019;20(6):228. https://doi.org/10.1208/s12249-019-1438-4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are appreciative that this study had been funded by the Basic Research Project of Liaoning Provincial Department of Education in 2023 (Project Number: JYTZD2023143, Project Name: Preparation and Evaluation of the Modified exenatide Long-acting Sustained Release Microspheres). The authors are grateful to Shenyang Pharmaceutical University, Liaoning, China for providing the experimental platform and related instruments.

Author information

Authors and Affiliations

Authors

Contributions

Wenjing Jiang: conceptualization, data curation, investigation, methodology, validation, formal analysis, writing — original draft.

Xiangjun Gao: data curation, methodology, validation, formal analysis.

Qiuli Wang: formal analysis, investigation, validation.

Yang Chen: data curation, investigation, methodology.

Dan Li: investigation, writing — original draft.

Xiaoyan Zhang: methodology, writing—original draft.

Xinggang Yang: conceptualization, formal analysis, investigation, project administration, resources, supervision, writing — review and editing.

Corresponding author

Correspondence to Xinggang Yang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Gao, X., Wang, Q. et al. The Modified Exenatide Microspheres: PLGA-PEG-PLGA Gel and Zinc-Exenatide Complex Synergistically Reduce Burst Release and Shorten Platform Stage. AAPS PharmSciTech 24, 251 (2023). https://doi.org/10.1208/s12249-023-02705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02705-6

Keywords

Navigation