Skip to main content

Advertisement

Log in

Thyme Oil–Containing Fluconazole-Loaded Transferosomal Bigel for Transdermal Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design–based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, − 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel’s FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)–containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 μg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)–containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pasko MT, Piscitelli SC, Van Slooten AD. Fluconazole: a new triazole antifungal agent. DICP. 1990;24:860–7.

    Article  CAS  PubMed  Google Scholar 

  2. Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit. Rev Microbiol. 2021;47:323–37.

    Article  CAS  PubMed  Google Scholar 

  3. de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS. Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol. 2018;9:1351.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quindós G, Gil-Alonso S, Marcos-Arias C, Sevillano E, Mateo E, Jauregizar N, Eraso E. Therapeutic tools for oral candidiasis: current and new antifungal drugs. Med Oral Patol Oral Cir Bucal. 2019;24(2):e172–80.

    PubMed  PubMed Central  Google Scholar 

  5. El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasisversicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  6. Abu El-Enin ASM, Khalifa MKA, Dawaba AM, Dawaba HM. Proniosomal gel-mediated topical delivery of fluconazole: development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res. 2019;10(1):20–6.

  7. Fatima I, Rasul A, Shah S, Saadullah M, Islam N, Khames A, Salawi A, Ahmed MM, Almoshari Y, Abbas G, Abourehab MAS, Mehmood Khan S, Chauhdary Z, Alshamrani M, Namazi NI, Naguib DM. Novasomes as nano-vesicular carriers to enhance topical delivery of fluconazole: a new approach to treat fungal infections. Molecules. 2022;27:2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pattnaik S, Swain K, Bindhani A, Mallick S. Influence of chemical permeation enhancers on transdermal permeation of alfuzosin: an investigation using response surface modeling. Drug DevInd Pharm. 2011;37(4):465–74.

    Article  CAS  Google Scholar 

  9. Pattnaik S, Swain K, Mallick S, Lin Z. Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm. 2011;406(1-2):106–10.

    Article  CAS  PubMed  Google Scholar 

  10. Swain K, Pattnaik S, Yeasmin N, Mallick S. Preclinical evaluation of drug in adhesive type ondansetron loaded transdermal therapeutic systems. Eur J Drug Metab Pharmacokinet. 2011;36(4):237–41.

    Article  CAS  PubMed  Google Scholar 

  11. Das B, Nayak AK, Nanda U. Topical gels of lidocaine HCl using cashew gum and Carbopol 940: preparation and in vitro skin permeation. Int J Biol Macromol. 2013;62:514–7.

  12. Das B, Sen SO, Maji R, Nayak AK, Sen KK. Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol. 2017;38:59–71.

    Article  CAS  Google Scholar 

  13. Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics. 2022;12(7):3372–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sapkota R, Dash AK. Liposomes and transferosomes: a breakthrough in topical and transdermal delivery. Ther Deliv. 2021;12:145–58.

    Article  CAS  PubMed  Google Scholar 

  15. Eid RK, Essa EA, El Maghraby GM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol. 2019;24:157–65.

    Article  CAS  PubMed  Google Scholar 

  16. Rapalli VK, Banerjee S, Khan S, Jha PN, Gupta G, Dua K, Hasnain MS, Nayak AK, Dubey SK, Singhvi G. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater SciEng C Mater Biol Appl. 2021;119:111548.

    Article  CAS  Google Scholar 

  17. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das B, Nayak AK, Mallick S. Transferosomes: a novel nanovesicular approach for drug delivery. In: Nayak AK, Hasnain MS, Aminabhavi TM, Torchilin VP, editors. Systems of nanovesicular drug delivery. United States: Academic Press, Elsevier Inc.; 2022. p. 103–14.

    Chapter  Google Scholar 

  19. Deng P, Athary Abdulhaleem MF, Masoud RE, Alamoudi WM, Zakaria MY. Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain. Int J Pharm. 2022;628:122274.

    Article  CAS  PubMed  Google Scholar 

  20. Kassem MA, Aboul-Einien MH, El Taweel MM. Dry gel containing optimized felodipine-loaded transferosomes: a promising transdermal delivery system to enhance drug bioavailability. AAPS PharmSciTech. 2018;19(5):2155–73.

    Article  CAS  PubMed  Google Scholar 

  21. Nayak AK, Hasnain MS, Aminabhavi TM, Torchilin VP. 2022. Nanovesicular systems in drug delivery, In: Nayak AK, Hasnain MS, Aminabhavi TM, Torchilin VP, editors. Systems of nanovesicular drug delivery, United States: Academic Press, Elsevier Inc., 2022, pp. 1-15.

  22. Maji R, Omolo CA, Jaglal Y, Singh S, Devnarain N, Mocktar C, Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int J Pharm. 2021;607:120990.

    Article  CAS  PubMed  Google Scholar 

  23. Singh VK, Banerjee I, Agarwal T, Pramanik K, Bhattacharya MK, Pal K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf B Biointerfaces. 2014;123:582–92.

    Article  CAS  PubMed  Google Scholar 

  24. Sagiri SS, Singh VK, Kulanthaivel S, Banerjee I, Basak P, Battachrya MK, Pal K. Stearate organogel-gelatin hydrogel based bigels: physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. J Mech Behav Biomed Mater. 2015;43:1–17.

    Article  CAS  PubMed  Google Scholar 

  25. Nayak AK, Das B. Introduction to polymeric gels. In: Pal K, Bannerjee I, editors. Polymeric gels, characterization, properties and biomedical applications, Woodhead Publishing Series in Biomaterials. U.S.A.: Elsevier Ltd.; 2018. p. 3–27.

    Google Scholar 

  26. Andonova V, Peneva P, Georgiev GS, Toncheva VT, Apostolova E, Peychev Z, Dimitrova S, Katsarova M, Petrova N, Kassarova M. Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms. Int J Nanomedicine. 2017;12:6221–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasparaviciene G, Kalveniene Z, Pavilonis A, Marksiene R, Dauksiene J, Bernatoniene J. Formulation and characterization of potential antifungal oleogel with essential oil of thyme. Evid Based Complement Alternat Med. 2018;2018:9431819.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nayak AK, Laha B, Sen KK. Development of hydroxyapatite-ciprofloxacin bone-implants using >>Quality by Design<<. Acta Pharm. 2011;61(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  29. Kandil SM, Soliman II, Diab HM, Bedair NI, Mahrous MH, Abdou EM. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients. Drug Deliv. 2022;29(1):534–47.

  30. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raza K, Singh B, Mahajan A, Negi P, Bhatia A, Katare OP. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J Drug Target. 2011;19(4):293–302.

    Article  CAS  PubMed  Google Scholar 

  32. Jana S, Ali SA, Nayak AK, Sen KK, Basu SK. Development and optimization of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design” approach. Chem Eng Res Des. 2014;92:2095–105.

    Article  CAS  Google Scholar 

  33. Kaur M, Nagpal M, Singh M, Singh TG, Aggarwal G, Dhingra GA. Improved antibacterial activity of topical gel-based on nanosponge carrier of cinnamon oil. Bioimpacts. 2021;11(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  34. Alyahya EM, Alwabsi K, Aljohani AE, Albalawi R, El-Sherbiny M, Ahmed R, Mortagi Y, Qushawy M. Preparation and optimization of itraconazole transferosomes-loaded HPMC hydrogel for enhancing its antifungal activity: 2^3 full factorial design. Polymers. 2023;15(4):995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dantas MG, Reis SA, Damasceno CM, Rolim LA, Rolim-Neto PJ, Carvalho FO, Quintans-Junior LJ, Almeida JR. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Scientific World Journal. 2016;2016:7394685.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malakar J, Nayak AK. Formulation and statistical optimization of multiple-unit ibuprofen-loaded buoyant system using 23-factorial design. Chem Eng Res Des. 2012;9:1834–46.

    Article  Google Scholar 

  37. Malakar J, Das K, Nayak AK. In situ cross-linked matrix tablets for sustained salbutamol sulfate release - formulation development by statistical optimization. Polym Med. 2014;44:221–30.

  38. Malakar J, Nayak AK. Floating bioadhesive matrix tablets of ondansetron HCl: Optimization of hydrophilic polymeric-blends. Asian J Pharm. 2013;7(4):174–83.

    Article  Google Scholar 

  39. Nayak AK, Kalia S, Hasnain MS. Optimization of aceclofenac-loaded pectinate-poly(vinyl pyrrolidone) beads by response surface methodology. Int J Biol Macromol. 2013;62:194–202.

    Article  CAS  PubMed  Google Scholar 

  40. Ashar F, Hani U, Osmani RAM, Kazim SM, Selvamuthukumar S. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology. Polymers (Basel). 2022;14(18):3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Das B, Dutta S, Nayak AK, Nanda U. Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: development and optimization. Int J Biol Macromol. 2014;70:506–15.

    Article  CAS  PubMed  Google Scholar 

  42. Bhattacharjee A, Das PJ, Dey S, Nayak AK, Roy PK, Chakrabarti S, Marbaniang D, Das SK, Ray S, Chattopadhyay P, Mazumder B. Development and optimization of besifloxacin hydrochloride loadedliposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf A: Physicochem Eng Aspects. 2020;585:124071.

    Article  CAS  Google Scholar 

  43. Wang W, Shu GF, Lu KJ, Xu XL, Sun MC, Qi J, Huang QL, Tan WQ, Du YZ. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J Nanobiotechnol. 2020;18(1):80.

    Article  CAS  Google Scholar 

  44. Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm. 2004;275(1-2):13–7.

    Article  CAS  PubMed  Google Scholar 

  45. Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258(1-2):141–51.

    Article  CAS  PubMed  Google Scholar 

  46. Varia U, Joshi D, Jadeja M. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. Future J Pharm Sci. 2022;8:39.

    Article  Google Scholar 

  47. Hasnain MS, Rishishwar P, Ali S, Alkahtani S, Tabish M, Milivojevic M, Ansari MT, Nayak AK. Formulation and ex vivo skin permeation of lidocaine HCl topical gels using dillenia (Dillenia indica L.) fruit gum. Revista Mex Ing Quím. 2020;19:1465–76.

  48. Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andonova V, Peneva PT, Apostolova EG, Dimcheva T, Peychev Z, Kassarova MI. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Tropical J Pharm Res. 2017;16:1455–63.

  50. PremrovBajuk B, Prem L, Vake T, Žnidaršič N, Snoj T. The effect of thymol on acetylcholine-induced contractions of the rat ileum and uterus under ex vivo conditions. Front Pharmacol. 2022;13:990654.

    Article  Google Scholar 

  51. Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta. 1998;1368:201–15.

    Article  CAS  PubMed  Google Scholar 

  52. Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017;10:586–92.

Download references

Acknowledgements

The authors are thankful to the President, Siksha ‘O' Anusandhan (Deemed to be University), Bhubaneswar 751030, Odisha, India.

Author information

Authors and Affiliations

Authors

Contributions

B. D.: conceptualization, investigation, methodology, data curation, writing—original draft; A. K. N.: supervision, methodology, formal analysis, validation, discussion, review; S. M.: supervision, review, and editing.

Corresponding authors

Correspondence to Amit Kumar Nayak or Subrata Mallick.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Nayak, A.K. & Mallick, S. Thyme Oil–Containing Fluconazole-Loaded Transferosomal Bigel for Transdermal Delivery. AAPS PharmSciTech 24, 240 (2023). https://doi.org/10.1208/s12249-023-02698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02698-2

Keywords

Navigation