Skip to main content
Log in

Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around − 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data of “Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement” can be used by AAPS PharmSciTech.

References

  1. Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release. 2022;348:95–114.

    Article  CAS  PubMed  Google Scholar 

  2. Raghu G, Collard HR, Egan JJ, MartinezFJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y Jr, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, A.E.J.A.C.o.I.P. Fibrosis. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.

  3. McDonald LT. Healing after COVID-19: are survivors at risk for pulmonary fibrosis?. Am J Physiol Lung Cell Mol Physiol. 2021;320(2):L257-l265.

  4. Bingbing X, Yanhong R, Jing G, Xuan H, Chengjun B, Shiyao W, Dingyuan J, Sa L, Qihang C, Min L, Ruie F, Ling Z, Huaping D, Chen W. Idiopathic Pulmonary Fibrosis Registry China study (PORTRAY): protocol for a prospective, multicentre registry study. BMJ Open. 2020;10(11): e036809.

    Article  Google Scholar 

  5. Strongman H, Kausar I, Maher TM. Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. Adv Ther. 2018;35(5):724–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Casas M. Air pollution exposure and interstitial lung diseases: have we identified all the harmful environmental exposures? Thorax. 2019;74(11):1013–4.

    Article  PubMed  Google Scholar 

  7. Blanchard AC, Waters VJ. microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40(6):727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reynolds CJ, Thanaraaj V, Sisodia R, Barber CM, Cullinan PJERJ. IPF risk: two’s company, three’s a crowd? Asbestos exposure, cigarette smoke, and MUC5B promoter polymorphism rs35705950. Findings from the idiopathic pulmonary fibrosis job exposures study (IPFJES). 2020;56:3851.

  9. Bolaki M, Antoniou KM. Combined pulmonary fibrosis and emphysema. Sem Respir Crit Care Med. 2020;41(2):177–83.

    Article  Google Scholar 

  10. Naito M, Kondo Y, Yamazaki H, Nakashima H, Matsui Y, Shiomi K, Satoh Y. OA01.05 The impact of lung age on postoperative complications in patients with lung cancer combined with pulmonary fibrosis and emphysema. J Thorac Oncol. 2017;12(1, Supplement):S244.

  11. Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res. 2021;22(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galli JA-O, Pandya A, Vega-Olivo M, Dass C, Zhao H, Criner GJ. Pirfenidone and nintedanib for pulmonary fibrosis in clinical practice: tolerability and adverse drug reactions. Respirology. 2017;22(6):1171–8.

  13. Patel P, Patel M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: in vitro, cell line and in vivo evaluation. Eur J Pharm Sci. 2021;159: 105715.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Liang X, Lu C, Kong Y, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Nanostructured lipid carriers as oral delivery systems for improving oral bioavailability of nintedanib by promoting intestinal absorption. Int J Pharm. 2020;586: 119569.

    Article  CAS  PubMed  Google Scholar 

  15. Qin Y, Li S, Zhao G, Fu X, Xie X, Huang Y, Cheng X, Wei J, Liu H, Lai Z. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway. Int J Nanomedicine. 2016;30(12):263–77.

  16. Mahri S, Rondon A, Wilms T, Bosquillon C, Vanbever R. Biodistribution and elimination pathways of PEGylated recombinant human deoxyribonuclease I after pulmonary delivery in mice. J Control Release. 2021;329:1054–65.

    Article  CAS  PubMed  Google Scholar 

  17. Vartiainen V, Raula J, Bimbo LM, Viinamäki J, Backman JT, Ugur N, Kauppinen E, Sutinen E, Joensuu E, Koli K, Myllärniemi M. Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. Int J Pharm. 2018;544(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lee C, Seo J, Hwang HS, Thao LQ, Lee S, Lee ES, Lee EH, Choi H-G, Youn YS. Treatment of bleomycin-induced pulmonary fibrosis by inhaled tacrolimus-loaded chitosan-coated poly(lactic-co-glycolic acid) nanoparticles. Biomed Pharmacother. 2016;78:226–33.

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Liang Q, Gao S, Jiang Q, Zhang F, Zhang R, Ruan H, Li S, Luan J, Deng R, Zhou H, Huang H, Yang C. Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-kappaB signaling pathway. Int Immunopharmacol. 2022;103: 108470.

    Article  CAS  PubMed  Google Scholar 

  20. Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J, Song W, Podar K, Hideshima T, Chauhan D, Schlossman R, Richardson P, Treon SP, Grewal IS, Munshi NC, Anderson KC. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005;65(24):11712–20.

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, He Z, Zhu M, Gao X, Yang Y, Zhang J, Pan Y, Guo Q, Peng Y, Wang E. Sevoflurane inhibits cardiac function in pulmonary fibrosis mice through the TLR4 signaling pathway. Pulm Circ. 2018;8(4):2045894018800702.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Skupin-Mrugalska P. Liposome-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Nanomedicine (Lond). 2022;17(24):1855–69.

  23. Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre. 2016; 25 Suppl 2(Suppl 2):60–72.

  24. Neurohr C, Kneidinger N, Ghiani A, Monforte V, Knoop C, Jaksch P, Parmar J, Ussetti P, Sole A, Muller-Quernheim J, Kessler R, Wirtz H, Boerner G, Denk O, Prante Fernandes S, Behr J. A randomized controlled trial of liposomal cyclosporine A for inhalation in the prevention of bronchiolitis obliterans syndrome following lung transplantation. Am J Transplant. 2022;22(1):222–229.

  25. Skubitz KM, Anderson PM. Inhalational interleukin-2 liposomes for pulmonary metastases: a phase I clinical trial. Anticancer Drugs. 2000;11(7):555–63.

    Article  CAS  PubMed  Google Scholar 

  26. Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnol. 2023;21(1):215.

    Article  CAS  Google Scholar 

  27. Hoy SM. Amikacin liposome inhalation suspension in refractory mycobacterium avium complex lung disease: a profile of its use. Clin Drug Investig. 2021;41(4):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirley M. Amikacin liposome inhalation suspension: a review in mycobacterium avium complex lung disease. Drugs. 2019;79(5):555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176: 113851.

    Article  CAS  PubMed  Google Scholar 

  30. Sawant SS, Patil SM, Shukla SK, Kulkarni NS, Gupta V, Kunda NK. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Deliv Transl Res. 2022;12(10):2474–87.

    Article  CAS  PubMed  Google Scholar 

  31. Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Suryaprakash Reddy C, Bhargav E. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci. 2018;13(1):91–100.

  32. Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB. Ramnarayanan C. Aerosol delivery of surfactant liposomes for management of pulmonary fibrosis: an approach supporting pulmonary mechanics. Pharmaceutics. 2021;13(11):1851

  33. Zuo T, Guan Y, Chang M, Zhang F, Lu S, Wei T, Shao W, Lin G. RGD(Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: preparation, characterization and antitumor efficacy in vivo and in vitro. Colloids Surf B Biointerfaces. 2016;147:90–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cao X, Deng T, Zhu Q, Wang J, Shi W, Liu Q, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Photothermal therapy mediated hybrid membrane derived nano-formulation for enhanced cancer therapy. AAPS PharmSciTech. 2023;24(6):146.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Nakashli R, Raveendran R, Khine YY, Cao C, McKay S, Lu H, Stenzel MH. Drug-loading content influences cellular uptake of polymer-coated nanocellulose. Mol Pharm. 2023;20(4):2017–28.

    Article  CAS  PubMed  Google Scholar 

  36. Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol. 2020;156:1455–63.

    Article  CAS  PubMed  Google Scholar 

  37. Chang M, Lu S, Zhang F, Zuo T, Guan Y, Wei T, Shao W, Lin G. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf B Biointerfaces. 2015;129:175–82.

    Article  CAS  PubMed  Google Scholar 

  38. Togami K, Maruta Y, Nanbu M, Tada H, Chono S. Prolonged distribution of aerosolized PEGylated liposomes in the lungs of mice with bleomycin-induced pulmonary fibrosis. Drug Dev Ind Pharm. 2020;46(11):1873–80.

    Article  CAS  PubMed  Google Scholar 

  39. Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic-<em>co</em>-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomed. 2017;12:6687–704.

    Article  Google Scholar 

  40. Li X, Yu H, Liang L, Bi Z, Wang Y, Gao S, Wang M, Li H, Miao Y, Deng R, Ma L, Luan J, Li S, Liu M, Lin J, Zhou H, Yang C. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol. 2020;178:114097.

  41. Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, Chen W. PEGylated liposomes as delivery systems for Gambogenic acid: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2018;172:26–36.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Luo X, Xu X, Gao N, Liu X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int J Pharm. 2017;517(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao J, Qin L, Song R, Su J, Yuan Y, Zhang X, Mao S. Elucidating inhaled liposome surface charge on its interaction with biological barriers in the lung. Eur J Pharm Biopharm. 2022;172:101–11.

    Article  CAS  PubMed  Google Scholar 

  44. Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Suryaprakash Reddy C, Bhargav E. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci. 2018;13(1):91–100.

  45. Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2010;4(6):367–88.

    Article  CAS  PubMed  Google Scholar 

  46. Snijder J, Peraza J, Padilla M, Capaccione K, Salvatore MM. Pulmonary fibrosis: a disease of alveolar collapse and collagen deposition. Expert Rev Respir Med. 2019;13(7):615–9.

  47. Geng Y, Li L, Yan J, Liu K, Yang A, Zhang L, Shen Y, Gao H, Wu X, Noth I, Huang Y, Liu J, Fan X. PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun. 2022;13(1):7114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song S, Fu Z, Guan R, Zhao J, Yang P, Li Y, Yin H, Lai Y, Gong G, Zhao S, Yu J, Peng X, He Y, Luo Y, Zhong N, Su J. Intracellular hydroxyproline imprinting following resolution of bleomycin-induced pulmonary fibrosis. Eur Respir J. 2022;59(5):2100864.

  49. Spagnolo P, Distler O, Ryerson CJ, Tzouvelekis A, Lee JS, Bonella F, Bouros D, Hoffmann-Vold AM, Crestani B, Matteson EL. Mechanisms of progressive fibrosis in connective tissue disease (CTD)-associated interstitial lung diseases (ILDs). Ann Rheum Dis. 2021;80(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  50. Carraro G, Mulay A, Yao C, Mizuno T, Konda B, Petrov M, Lafkas D, Arron JR, Hogaboam CM, Chen P, Jiang D, Noble PW, Randell SH, McQualter JL, Stripp BR. Single-cell reconstruction of human basal cell diversity in normal and idiopathic pulmonary fibrosis lungs. Am J Respir Crit Care Med. 2020;202(11):1540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sridharan D, Pracha N, Dougherty JA, Akhtar A, Alvi SB, Khan M. A one-stop protocol to assess myocardial fibrosis in frozen and paraffin sections. Methods Protoc. 2022;5(1):13.

  52. Qiao L, Lin X, Zhao Y, Wang Q, Liu H, You M, Yuan Q, Yang Z, Bian W, Liu J, Guo Z, Han J. Short-term dietary selenium deficiency induced liver fibrosis by inhibiting the Akt/mTOR signaling pathway in rats. Biol Trace Elem Res. 2023;201(8):3825–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81803458), the Fundamental Research Funds for the Central Universities, Nankai University (63231203), the Fundamental Research Funds for the Central Universities, Nankai University (63231200), and the Natural Science Foundation of Tianjin (22JCQNJC01610).

Author information

Authors and Affiliations

Authors

Contributions

ZL and LJ: conducting the experiments and data acquisition and analysis and writing the original manuscript. HL, YS, CZ, and XX: assisting in the experiments, data acquisition, and literature search. XA, XG, and CY: review, editing, guidance, and supervision.

Corresponding authors

Correspondence to Xiaoting Gu, Xiaoyu Ai or Cheng Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Ji, L., Liu, H. et al. Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement. AAPS PharmSciTech 24, 235 (2023). https://doi.org/10.1208/s12249-023-02690-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02690-w

Keywords

Navigation