Skip to main content

Advertisement

Log in

Investigations on Compaction Behavior of Kollidon®SR-Based Multi-component Directly Compressed Tablets for Preparation of Controlled Release Diclofenac Sodium

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 30 November 2023

This article has been updated

Abstract

The physics of tablets mixtures has gained much attention lately. The purpose of this work is to evaluate the compaction properties of Kollidon® SR (KSR) in the presence of different excipients such as Microcrystalline cellulose (MCC), Monohydrous lactose (MH Lactose), Poly (vinyl acetate) (PVA100), and a water-soluble drug Diclofenac sodium (DNa) to prepare once daily formulation. Tablets were prepared using direct compression and were compressed into flat-faced tablets using hydraulic press at various pressures. The combination of MCC and KSR in the tablets showed reduced porosity, and almost constant low Py values as KSR levels increased; also, KSR-DNa tablets had higher percentage porosity and crushing strength values than KSR-MH Lactose tablets. The crushing strengths of KSR-MCC tablets were larger than those of KSR-DNa tablets. Ternary mixture tablets comprised of KSR-MCC-DNa showed decreased porosities and low Py values as the percentage of KSR increased especially at high compression pressures but had higher crushing strengths compared to KSR-DNa or MCC-DNa binary tablets. KSR-MH Lactose-DNa ternary tablets experienced lower porosities and crushing strengths compared to KSR-MCC-DNa tablets. Quaternary tablets of KSR-PVA100-MCC-DNa showed lower porosity and Py values than quaternary tablets obtained using similar proportion of MH Lactose instead of MCC. In conclusion, optimum quaternary tablets were obtained with optimum crushing strengths, relatively low Py, and moderate percentage porosities among all prepared quaternary tablets. The drug release of the optimum quaternary tablets demonstrated similar in vitro release profile compared to that of the marketed product with a mechanism of release that follows Korsmeyer-Peppas model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available at the corresponding author and ready to be provided at any time upon request.

Change history

References

  1. Müller-Goymann C, Schubert R, Bauer K-H, Frömming K-H, Führer C, Müller-Goymann C, et al. Bauer/Frömming/Führer Pharmazeutische Technologie: Mit Einführung in Biopharmazie und Biotechnologie: BiblioScout; 2022. Available from: https://biblioscout.net/book/https://doi.org/10.52778/9783804743748.

  2. Leuenberger H, Leu R. Formation of a tablet: a site and bond percolation phenomenon. J Pharm Sci. 1992;81(10):976–82.

    Article  CAS  PubMed  Google Scholar 

  3. York P. Crystal engineering and particle design for the powder compaction process. Drug Dev Ind Pharm. 1992;18(6–7):677–721.

    Article  CAS  Google Scholar 

  4. Sun C, Grant DJ. Influence of crystal shape on the tableting performance of L-lysine monohydrochloride dihydrate. J Pharm Sci. 2001;90(5):569–79.

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Khanvilkar KH, Moore AD, Hilliard-Lott M. Effects of manufacturing process variables on in vitro dissolution characteristics of extended-release tablets formulated with hydroxypropyl methylcellulose. Drug Dev Ind Pharm. 2003;29(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  6. Levina M, Rajabi-Siahboomi AR. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93(11):2746–54.

    Article  CAS  PubMed  Google Scholar 

  7. Nokhodchi A, Ford JL, Rowe PH, Rubinstein MH. The influence of moisture content on the consolidation properties of hydroxypropylmethylcellulose K4M (HPMC 2208). J Pharm Pharm. 1996;48(11):1116–21.

    Article  CAS  Google Scholar 

  8. Kottke MK, Rudnic EM. Tablet dosage forms. Modern Pharm. 2002;4:287–330.

    Google Scholar 

  9. Li Q, Rudolph V, Weigl B, Earl A. Interparticle van der Waals force in powder flowability and compactibility. Int J Pharm. 2004;280(1–2):77–93.

    Article  CAS  PubMed  Google Scholar 

  10. David S, Augsburger L. Plastic flow during compression of directly compressible fillers and its effect on tablet strength. J Pharm Sci. 1977;66(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hiestand E, Wells J, Peot C, Ochs J. Physical processes of tableting. J Pharm Sci. 1977;66(4):510–9.

    Article  CAS  PubMed  Google Scholar 

  12. Roopwani R, Buckner IS. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data. Int J Pharm. 2011;418(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  13. Osei-Yeboah F, Chang S-Y, Sun CC. A critical examination of the phenomenon of bonding area-bonding strength interplay in powder tableting. Pharm Res. 2016;33:1126–32.

    Article  CAS  PubMed  Google Scholar 

  14. Ashby M. Mechanisms of deformation and fracture. Adv Appl Mechan. 1983;23:117–77.

    Article  Google Scholar 

  15. Ge D. Mechanical metallurgy1988.

  16. Werkmeister S, Dawson AR, Wellner F. Permanent deformation behaviour of granular materials. Road mater Pav Des. 2005;6(1):31–51.

    Article  Google Scholar 

  17. Jones T, Ho A, Barker J. The use of instrumentation in tablet research, development and production. Pharm Technol. 1985;9:42–7.

    Google Scholar 

  18. Vromans H, Lerk C. Densification properties and compactibility of mixtures of pharmaceutical excipients with and without magnesium stearate. Int J Pharm. 1988;46(3):183–92.

    Article  CAS  Google Scholar 

  19. Jetzer W. Compaction characteristics of binary mixtures. Int J Pharm. 1986;31(3):201–7.

    Article  CAS  Google Scholar 

  20. Al-Ibraheemi ZAM, Anuar M, Taip F, Amin M, Tahir S, Mahdi AB. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Partic Sci Technol. 2013;31(6):561–7.

    Article  CAS  Google Scholar 

  21. Gentis ND, Betz G. Compressibility of binary powder formulations: Investigation and evaluation with compaction equations. J Pharm Sci. 2012;101(2):777–93.

    Article  CAS  PubMed  Google Scholar 

  22. Es-Saheb MH. The compaction characteristics of binary mixture powders. J King Saud Univ-Eng Sci. 1992;4(1):79–93.

    CAS  Google Scholar 

  23. Mattsson S, Nyström C. Evaluation of critical binder properties affecting the compactibility of binary mixtures. Drug Dev Ind Pharm. 2001;27(3):181–94.

    Article  CAS  PubMed  Google Scholar 

  24. Duberg M, Nyström C. Studies on direct compression of tablets XVII. Porosity—pressure curves for the characterization of volume reduction mechanisms in powder compression. Powder Technol. 1986;46(1):67–75.

    Article  CAS  Google Scholar 

  25. Wu C-Y, Best SM, Bentham AC, Hancock BC, Bonfield W. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders. Pharm Res. 2006;23:1898–905.

    Article  CAS  PubMed  Google Scholar 

  26. Narayan BK, Hall K. Polyviriyl acetate applied to controlled-release formulations. Pharm Technol. 2003;18:34–7.

    Google Scholar 

  27. Kim Y-H, Om C-Y, Hwang Y-S, Hong Y-B. Adhesive properties of water-soluble and biodegradable hot-melt adhesive based on partially saponified poly (vinyl acetate). Mater Res Express. 2020;7(7):075301.

    Article  CAS  Google Scholar 

  28. Basf A. Technical information for Kollidon SR. Germany: Ludwigshafen; 1999.

    Google Scholar 

  29. Picker K. The relevance of glass transition temperature for the process of tablet formation. J Ther Anal Calorimet. 2003;73:597–605.

    Article  CAS  Google Scholar 

  30. Hossain MSIMS. Preparation and characterization of Ibuprofen matrix tablet based on Kollidon SR and Carnauba wax.USTA. 2007;13(1):86-92.

  31. Draganoiu E, Andheria M, Sakr A. Evaluation of the new polyvinylacetate/povidone excipient for matrix sustained release dosage forms. Pharmazeutische Industrie. 2001;63(6):624–9.

    CAS  Google Scholar 

  32. Sahoo J, Murthy P, Biswal S, Sahoo S, Mahapatra A. Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon® SR or hydroxy propyl methyl cellulose. Aaps Pharmscitech. 2008;9(2):577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saxena A, Srinivas N, Sravanthi M. Formulation and in–vitro evaluation of matrix type sustained release tablets of paliperidone. Innov Pharm Pharmacother. 2013;1(3):185–98.

    CAS  Google Scholar 

  34. Yasmin D, Rahman MR, Akter M. Formulation development of directly compressed Naproxen SR tablet using Kollidon SR and Avicel PH 102 polymer. Int CurrPharm J. 2013;2(6):112–4.

    CAS  Google Scholar 

  35. Kranz H, Guthmann C, Wagner T, Lipp R, Reinhard J. Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur J pharm Sci. 2005;26(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  36. Mohammad Safiqul Islam MSRMHR. In vitro release kinetics study of diltiazem hydrochloride from wax and kollidon SR based matrix tablets. Ind J Pharm Educ Res. 2008;7(2):101–8.

    Google Scholar 

  37. Mohammad Safiqul Islam MMRM. Effect of physiochemical properties on the release profile of Diltiazem HCl and Naproxen from HPMC and Kollidon SR based matrix tablets. Ind J Pharm Educ Res. 2009;43(1):46–54.

    Google Scholar 

  38. Shao ZJ, Farooqi MI, Diaz S, Krishna AK, Muhammad NA. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: polyvinylacetate-povidone. Pharm Devel Technol. 2001;6(2):247–54.

    Article  CAS  Google Scholar 

  39. Razzak SMI, Khan F, Hossain M, Khan ZR, Azad MAK, Reza S. Effect of channeling agents on the release pattern of theophylline from kollidon SR based matrix tablets. Pakistan J Pharm Sci. 2009;22(3).

  40. Fouad EA, Ibrahim MA, El-Badry M. Embedment of chlorpheniramine maleate in directly compressed matrix tablets of compritol and kollidone SR. Tropic J pharm Res. 2015;14(3):371–7.

    Article  CAS  Google Scholar 

  41. Das U, Hossain MS. Effects of release modifier on Carvedilol release from Kollidon SR based matrix. Int Curr Pharm J. 2012;1(8):186–92.

    Article  Google Scholar 

  42. Sakr W, Alanazi F, Sakr A. Effect of Kollidon® SR on the release of Albuterol Sulphate from matrix tablets. Saudi Pharmaceut J. 2011;19(1):19–27.

    Article  CAS  Google Scholar 

  43. Sarwar S, Hossain MS. Development and evaluation of sustained release losartan potassium matrix tablet using kollidon SR as release retardant. Brazilian J Pharmaceut Sci. 2012;48:621–8.

    Article  CAS  Google Scholar 

  44. Hossain MA, Alam S, Paul P. Development and evaluation of sustained release matrix tablets of indapamide using Methocel K15M CR. J Appl Pharmaceut Sci. 2013;3(5):085–90.

    CAS  Google Scholar 

  45. Pragathi N. Effect of different diluents on release profile of Lamivudine from sustained release matrix tablet using kollidon SR as release retardant. Int J Res Pharmaceut Nano Sci. 2015;4(2):50–9.

    CAS  Google Scholar 

  46. Mulani H, Patel B, Shah N. Formulation and evaluation of Kollidon® SR for PH-independent extended release matrix systems for propranolol hydrochloride. J Pharm Sci Res. 2012;3.

  47. Rahman MZ, Ahamed SK, Banik S, Hossain MS. Release profile of losartan potassium from formulated sustained release matrix tablet. Bangladesh Pharmaceut J. 2015;16(2):177–83.

    Article  Google Scholar 

  48. Reza MS, Quadir MA, Haider SS. Development of theophylline sustained release dosage form based on kollidon SR. Pak J Pharm Sci. 2002;15(1):63–70.

    PubMed  Google Scholar 

  49. Md. Selim Reza MAQSSH. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. Pharm Pharm Sci. 2003;6(2):274-91.

  50. T. Steenpaß, W. Fraunhofer, K. Kolter. The development of sustained release floating systems based on Kollidon® SR. Proc 3rd World Meeting on Pharm Biopharm and Pharm Technol. 2000;3:27-8.

  51. Guguloth M, Bomma R, Veerabrahma K. Development of sustained release floating drug delivery. PDA J Pharm Sci Technol. 2011;65:198–206.

    Article  CAS  PubMed  Google Scholar 

  52. Shao ZJ, Farooqi MI, Diaz S, Krishna AK, Muhammad NA. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: polyvinylacetate-povidone. Pharm Devel Technol. 2001;6(2):247–54.

    Article  CAS  Google Scholar 

  53. Strübing S, Metz H, Mäder K. Characterization of poly (vinyl acetate) based floating matrix tablets. J Control Rel. 2008;126(2):149–55.

    Article  Google Scholar 

  54. Mohan G, Ramesh B, Kishan V. Development of sustained release floating drug delivery system for norfloxacin. 2011;65(3):198–206.

    Google Scholar 

  55. Hauschild K, Picker-Freyer KM. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate. Pharm Devel Technol. 2006;11(1):125–40.

    Article  CAS  Google Scholar 

  56. Engineer S, Shao ZJ, Khagani NA. Temperature/humidity sensitivity of sustained-release formulations containing Kollidon® SR. Drug Devel Ind Pharm. 2004;30(10):1089–94.

    Article  CAS  Google Scholar 

  57. Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy: Lea & Febiger Philadelphia; 1976.

  58. Denny P. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 2002;127(2):162–72.

    Article  CAS  Google Scholar 

  59. Costa P, Lobo JS. Influence of dissolution medium agitation on release profiles of sustained-release tablets. Drug Devel Ind Pharm. 2001;27(8):811–7.

    Article  CAS  Google Scholar 

  60. Yuksel N, Kanık AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and-independent methods. Int J Pharm. 2000;209(1–2):57–67.

    Article  CAS  PubMed  Google Scholar 

  61. Picker KM, Hoag SW. Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry. J Pharm Sci. 2002;91(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  62. Sun CC. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm. 2008;346(1–2):93–101.

    Article  CAS  PubMed  Google Scholar 

  63. Roberts R, Rowe R. Brittle/ductile behaviour in pharmaceutical materials used in tabletting. Int J Pharm. 1987;36(2–3):205–9.

    Article  CAS  Google Scholar 

  64. Rubinstein M. Tablets. Pharmaceutics: The science of dosage form design churchill livingstone. 1988:304-21.

  65. Pesonen T, Paronen P. The effect of partice and power proterties on the mechnical properties of directly compressed cellulose tablets. Drug Devel Ind Pharm. 1990;16(1):31–54.

    Article  CAS  Google Scholar 

  66. Westermarck S, Juppo AM, Kervinen L, Yliruusi J. Microcrystalline cellulose and its microstructure in pharmaceutical processing. Eur J Pharm Biopharm. 1999;48(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  67. Albers J, Knop K, Kleinebudde P. Brand-to-brand and batch-to-batch uniformity of microcrystalline cellulose in direct tableting with a pneumohydraulic tablet press. Pharmazeutische Ind. 2006;68(12):1420–8.

    CAS  Google Scholar 

  68. Kushner J IV. Utilizing quantitative certificate of analysis data to assess the amount of excipient lot-to-lot variability sampled during drug product development. Pharm Devel Technol. 2013;18(2):333–42.

    Article  CAS  Google Scholar 

  69. Bandelin FJ. Compressed tablets by wet granulation. Pharm Dosage Tab. 1989;1:131–93.

    Google Scholar 

  70. Reier G. Fun facts about Avicel® microcrystalline cellulose also known as cellulose gel. 2013.

  71. Ilkka J, Paronen P. Prediction of the compression behaviour of powder mixtures by the Heckel equation. Int J Pharm. 1993;94(1–3):181–7.

    Article  CAS  Google Scholar 

  72. Duberg M, Nyström C. Studies on direct compression of tablets XII. The consolidation and bonding properties of some pharmaceutical compounds and their mixtures with Avicel 105. Int J Pharm Tech Prod Manuf. 1985;6(2):17–25.

    CAS  Google Scholar 

  73. Barra J, Falson-Rieg F, Doelker E. Influence of the organization of binary mixes on their compactibility. Pharm Res. 1999;16:1449–55.

    Article  CAS  PubMed  Google Scholar 

  74. Agnese T, Cech T, Wildschek F. Determining the minimum amount of Kollidon® SR required in a tabletting blend to obtain a matrix tablet.

  75. Humbert-Droz P, Mordier D, Doelker E. Densification behaviour of powder mixtures. Acta Pharm Technol. 1983;29(2):69–73.

    Google Scholar 

  76. Garr J, Rubinstein M. The effect of rate of force application on the properties of microcrystalline cellulose and dibasic calcium phosphate mixtures. Int J Pharm. 1991;73(1):75–80.

    Article  CAS  Google Scholar 

  77. Sheikh-Salem M, Fell J. Compaction characteristics of mixtures of materials with dissimilar compaction mechanisms. Int J Pharm Tech Prod Mfr. 1981;2(1):19–22.

    CAS  Google Scholar 

  78. POLY(VINYL ACETATE) | 9003-20-7 2023 [Available from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3700594.htm. Accessed Aug 2023.

  79. Sallmann AR. The history of diclofenac. Am J Med. 1986;80(Supplement 42):29–33.

    Article  CAS  PubMed  Google Scholar 

  80. Itoh T, Shohji E, Adachi S. Some physical properties of anhydrous alpha lactose stable form anhydrous alpha beta lactose compound and anhydrous beta lactose in crystalline state. Jpn J Zootech Sci. 1987;58(8):681–6.

    CAS  Google Scholar 

  81. Itoh T, Shohji E, Adachi S. Some physical properties of anhydrous alpha-lactose stable form, anhydrous alpha, beta-lactose compound and anhydrous beta-lactose in crystalline state. Jpn J Zootech Sci (Japan). 1987;58(8):681–6.

    CAS  Google Scholar 

  82. A. Maschke UKKK. Effect of copovidone on the release profile of theophylline from Kolllidon SR matrices. Development Pharma Ingredients.

  83. Leuenberger H, Rohera B, Haas C. Percolation theory—a novel approach to solid dosage form design. Int J Pharm. 1987;38(1–3):109–15.

    Article  CAS  Google Scholar 

  84. Holman L. The compaction behaviour of particulate materials. An elucidation based on percolation theory. Powder Technol. 1991;66(3):265–80.

    Article  CAS  Google Scholar 

  85. Leuenberger H. The compressibility and compactibility of powder systems. Int J Pharm. 1982;12(1):41–55.

    Article  CAS  Google Scholar 

  86. Holman L, Leuenberger H. The effect of varying the composition of binary powder mixtures and compacts on their properties: a percolation phenomenon. Powder Technol. 1990;60(3):249–58.

    Article  CAS  Google Scholar 

  87. Blattner D, Kolb M, Leuenberger H. Percolation theory and compactibility of binary powder systems. Pharm Res. 1990;7:113–7.

    Article  CAS  PubMed  Google Scholar 

  88. Van Veen B, van der Voort MK, Bolhuis G, Zuurman K, Frijlink H. Tensile strength of tablets containing two materials with a different compaction behaviour. Int J Pharm. 2000;203(1–2):71–9.

    Article  PubMed  Google Scholar 

  89. Leuenberger H, Ineichen L. Percolation theory and physics of compression. Eur J pharm Sci Biopharm. 1997;44(3):269–72.

    Article  CAS  Google Scholar 

  90. Kuentz M, Leuenberger H. A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. Eur J Pharm Biopharm. 2000;49(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  91. Bhat G, Hosmani A, Ketkar A, Paradkar A. Percolation theory: applications in pharmacy. Ind J Pharm Sci. 2000;62(5):321–6.

    Google Scholar 

  92. Ramı́rez N, Melgoza LMA, Kuentz M, Sandoval H, Caraballo I. Comparison of different mathematical models for the tensile strength–relative density profiles of binary tablets. Eur J pharm Sci. 2004;22(1):19-23.

  93. Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients. Eur J Pharm Biopharm. 2006;64(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  94. Amin MC, Fell JT. Comparison studies on the percolation thresholds of binary mixture tablets containing excipients of plastic/brittle and plastic/plastic deformation properties. Drug Devel Ind Pharm. 2004;30(9):937–45.

    Article  CAS  Google Scholar 

  95. Jain N, Singh VK, Chauhan S. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J Mech Behav Mater. 2017;26(5–6):213–22.

    Article  CAS  Google Scholar 

  96. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  97. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received funding (grant 184/2021) from the Jordan University of Science and Technology (JUST).

Author information

Authors and Affiliations

Authors

Contributions

Wasfy M. Obeidat: conceptualization, study design, data collection, analysis, and interpretation; writing the paper. Ishraq K. Lahlouh helped in performing most of the experimental work and plotting the produced data. Shadi F. Gharaibeh provided assistance with the original manuscript’s writing, data analysis, and interpretation.

Corresponding author

Correspondence to Wasfy M. Obeidat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to update authors affiliation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 980 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeidat, W.M., Lahlouh, I.K. & Gharaibeh, S.F. Investigations on Compaction Behavior of Kollidon®SR-Based Multi-component Directly Compressed Tablets for Preparation of Controlled Release Diclofenac Sodium. AAPS PharmSciTech 24, 225 (2023). https://doi.org/10.1208/s12249-023-02685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02685-7

Keywords

Navigation