Skip to main content

Advertisement

Log in

Study on the Nasal Drug Delivery System of NMD Liposomes In Situ Thermosensitive Gel

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nimodipine (NMD) is a 1,4-dihydropyridine calcium antagonist that is effective in the prevention and treatment of cerebral arterial vasospasm and cerebral ischemic injury caused by subarachnoid hemorrhage. Since the drug itself is highly insoluble in water and has low oral bioavailability, while injectable formulations may cause pain and inflammation, the blood–brain barrier (BBB) prevents the effective delivery of therapeutic agents to the brain tissue. Therefore, in the present study, NMD liposomes were prepared by ethanol injection and innovatively lyophilised and loaded into temperature-sensitive in situ gels for intranasal administration as sprays to deliver drugs to brain tissues bypassing the blood–brain barrier. The optimal gel formulation was obtained by screening in which liposomes were divided into lecithin, cholesterol, and NMD in the ratio of 40:10: 1; Pluronic P407, Pluronic P188, Tween 80, polyvinyl ketone and ethyl nipagin in the ratio of (180:20:3:1:1); Pluronic P407, Pluronic P188, Tween 80, polyvinyl ketone, and ethyl nipagin in the ratio of (180:20:3:1:1). The prepared flow gel can form a solidified gel after a temperature of 31.07–32.07°C and a time of 58.51–59.89 s. Meanwhile, the NMD liposome gel formulation achieved sustained release over 56 h. The pharmacokinetic results of the developed NMD liposomal temperature-sensitive in situ gel and NMD temperature-sensitive in situ gel showed that liposomal nasal mucosal in situ gel is a more effective brain-targeted drug delivery system for NMD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Yang W, Luo H, Ma Y, Si S, Zhao H. Effects of antihypertensive drugs on cognitive function in elderly patients with hypertension: a review. Aging Dis. 2021;12(3):841–51. https://doi.org/10.14336/AD.2020.1111.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, et al. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging. 2020;12(21):21161–85. https://doi.org/10.18632/aging.103796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–7. https://doi.org/10.1016/j.ijpharm.2013.01.065.

    Article  CAS  PubMed  Google Scholar 

  4. Hassan N, Ali M, Ali J. Development and evaluation of novel buccoadhesive wafers of nimodipine for treatment of hypertension. Drug Delivery. 2010;17(2):59–67. https://doi.org/10.3109/10717540903508987.

    Article  CAS  PubMed  Google Scholar 

  5. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640–65. https://doi.org/10.1016/j.addr.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  6. Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001;53(1):3–21. https://doi.org/10.1211/0022357011775145.

    Article  CAS  PubMed  Google Scholar 

  7. Chelladurai S, Mishra M, Mishra B. Design and evaluation of bioadhesive in-situ nasal gel of ketorolac tromethamine. Chem Pharm Bull (Tokyo). 2008;56(11):1596–9. https://doi.org/10.1248/cpb.56.1596.

    Article  CAS  PubMed  Google Scholar 

  8. Uppuluri CT, Ravi PR, Dalvi AV. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int J Pharm. 2021;606: 120881. https://doi.org/10.1016/j.ijpharm.2021.120881.

    Article  CAS  PubMed  Google Scholar 

  9. Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm. 2018;548(1):609–24. https://doi.org/10.1016/j.ijpharm.2018.07.014.

    Article  CAS  PubMed  Google Scholar 

  10. Hosny KM, Hassan AH. Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: preparation, characterization, and in vivo evaluation. Int J Pharm. 2014;475(1–2):191–7. https://doi.org/10.1016/j.ijpharm.2014.08.064.

    Article  CAS  PubMed  Google Scholar 

  11. Kadri R, Bacharouch J, Elkhoury K, Ben Messaoud G, Kahn C, Desobry S, et al. Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Mater Today Bio. 2020;6: 100046. https://doi.org/10.1016/j.mtbio.2020.100046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115. https://doi.org/10.1007/s10856-019-6318-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elkhoury K, Russell CS, Sanchez-Gonzalez L, Mostafavi A, Williams TJ, Kahn C, et al. Soft-nanoparticle functionalization of natural hydrogels for tissue engineering applications. Adv Healthc Mater. 2019;8(18): e1900506. https://doi.org/10.1002/adhm.201900506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 2013;61(3):912–30. https://doi.org/10.1016/j.actamat.2012.10.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923. https://doi.org/10.1002/jps.21210.

    Article  CAS  PubMed  Google Scholar 

  16. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51. https://doi.org/10.1016/s0142-9612(03)00340-5.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed TA, Badr-Eldin SM, Ahmed OA, Aldawsari H. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J DRUG DELIV SCI TEC. 2018;48:499–508.

    Article  CAS  Google Scholar 

  18. Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54–61. https://doi.org/10.1016/j.ejpb.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  19. Hosny KM, Hassan AH. Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: preparation, characterization, and in vivo evaluation. Int J Pharm. 2014;475(1–2):191–7. https://doi.org/10.1016/j.ijpharm.2014.08.064.

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics. 2019;9(25):7826–48. https://doi.org/10.7150/thno.37216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–67. https://doi.org/10.1016/j.biomaterials.2016.01.061.

    Article  CAS  PubMed  Google Scholar 

  22. Kang T, Tran TTT, Park C, Lee BJ. Biomimetic shear stress and nanoparticulate drug delivery. J PHARM. 2017;47(2):133–9.

    CAS  Google Scholar 

  23. Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics [published correction appears in J Pharm Investig. 2019;49(1):201]. J Pharm Investig. 2018;48(1):43–60. https://doi.org/10.1007/s40005-017-0370-4.

    Article  CAS  PubMed  Google Scholar 

  24. Han SM, Na YG, Lee HS, Son GH, Jeon SH, Bang KH, et al. Improvement of cellular uptake of hydrophilic molecule, calcein, formulated by liposome. J Pharm. 2018;48(5):595–601.

    CAS  Google Scholar 

  25. Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv. 2011;2011: 469679. https://doi.org/10.1155/2011/469679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park O, Yu G, Jung H, Mok H. Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. J Pharm. 2017;47(1):11–8.

    CAS  Google Scholar 

  27. Hoang NH, Lim C, Sim T, Oh KT. Triblock copolymers for nano-sized drug delivery systems. J Pharm. 2017;47(1):27–35.

    CAS  Google Scholar 

  28. Gupta B, Yong CS, Kim JO. Solid matrix-based lipid nanoplatforms as carriers for combinational therapeutics in cancer. J Pharm. 2017;47(6):461–73.

    CAS  Google Scholar 

  29. Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–34. https://doi.org/10.1016/j.ejps.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  30. Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv. 2016;23(9):3681–95. https://doi.org/10.1080/10717544.2016.1223216.

    Article  CAS  PubMed  Google Scholar 

  31. Jain R, Nabar S, Dandekar P, Patravale V. Micellar nanocarriers: potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm Res. 2010;27(4):655–64. https://doi.org/10.1007/s11095-009-0041-x.

    Article  CAS  PubMed  Google Scholar 

  32. Pokharkar V, Patil-Gadhe A, Kaur G. Physicochemical and pharmacokinetic evaluation of rosuvastatin loaded nanostructured lipid carriers: influence of long- and medium-chain fatty acid mixture. Pharm Investig. 2018;48:465–76.

    Article  CAS  Google Scholar 

  33. Singh SK, Dadhania P, Vuddanda PR, Jain A, Velaga S, Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Adv. 2016;6(3):2032–45.

    Article  CAS  Google Scholar 

  34. Kim HS, Lee DY. Photothermal therapy with gold nanoparticles as an anticancer medication. J Pharm. 2017;47(1):19–26.

    CAS  Google Scholar 

  35. Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release. 2019;295:187–200. https://doi.org/10.1016/j.jconrel.2018.12.049.

    Article  CAS  PubMed  Google Scholar 

  36. Kapoor M, Cloyd JC, Siegel RA. A review of intranasal formulations for the treatment of seizure emergencies. J Control Release. 2016;237:147–59. https://doi.org/10.1016/j.jconrel.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):681–93. https://doi.org/10.3109/10717544.2014.920431.

    Article  CAS  PubMed  Google Scholar 

  38. Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today. 2018;23(5):1079–88. https://doi.org/10.1016/j.drudis.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  39. Lungare S, Hallam K, Badhan RK. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int J Pharm. 2016;513(1–2):280–93. https://doi.org/10.1016/j.ijpharm.2016.09.042.

    Article  CAS  PubMed  Google Scholar 

  40. Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3(1):6. https://doi.org/10.3390/gels3010006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agrawal M, Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. https://doi.org/10.1016/j.jconrel.2017.05.019.

    Article  CAS  PubMed  Google Scholar 

  42. Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine. 2016;11:5381–414. https://doi.org/10.2147/IJN.S117210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guan T, Miao Y, Xu L, Yang S, Wang J, He H, et al. Injectable nimodipine-loaded nanoliposomes: preparation, lyophilization and characteristics. Int J Pharm. 2011;410(1–2):180–7. https://doi.org/10.1016/j.ijpharm.2011.03.009.

    Article  CAS  PubMed  Google Scholar 

  44. Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 2010;398(1–2):165–78. https://doi.org/10.1016/j.ijpharm.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  45. Abd Elhady SS, Mortada ND, Awad GA, Zaki NM. Development of in situ gelling and muco adhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharm J. 2003;11.

  46. Vanaja K, Zare M, Basavaraju B, Salwa S, Murthy SN, Shivakumar HN. Thermosensitive in situ liposomal gels loaded with antimicrobial agent for oral care in critically ill patients. Ther Deliv. 2020;11(4):231–43. https://doi.org/10.4155/tde-2019-0092.

    Article  CAS  PubMed  Google Scholar 

  47. Ozbay I, Kucur C, Değer A, Ital I, Kasim CM, Oghan F. Cytotoxic effects of intranasal midazolam on nasal mucosal tissue. J Craniofac Surg. 2015;26(6):2008–12. https://doi.org/10.1097/SCS.0000000000001965.

    Article  CAS  PubMed  Google Scholar 

  48. Sherje AP, Londhe V. Development and evaluation of pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal delivery. AAPS PharmSciTech. 2018;19(1):384–94. https://doi.org/10.1208/s12249-017-0844-8.

    Article  CAS  PubMed  Google Scholar 

  49. Shah D, Guo Y, Ban I, Shao J. Intranasal delivery of insulin by self-emulsified nanoemulsion system: In vitro and in vivo studies. Int J Pharm. 2022;616:121565. https://doi.org/10.1016/j.ijpharm.2022.121565.

    Article  CAS  PubMed  Google Scholar 

  50. Macdonald RL, Hänggi D, Strange P, Steiger HJ, Mocco J, Miller M, et al. Nimodipine pharmacokinetics after intraventricular injection of sustained-release nimodipine for subarachnoid hemorrhage [published online ahead of print, 2019 Dec 6]. J Neurosurg. 2019;1–7. https://doi.org/10.3171/2019.9.JNS191366.

  51. de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10(12):1699–709. https://doi.org/10.1517/17425247.2013.856877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Rosa R, Garcia AA, Braschi C, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A. 2005;102(10):3811–6. https://doi.org/10.1073/pnas.0500195102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Fund Project of Science and Technology Department of Jilin Province (No. YDZJ202301ZYTS141) and Key R&D Project of Jilin Province Science and Technology Development Plan of China (No. 20210204166YY).

Author information

Authors and Affiliations

Authors

Contributions

Lin Ma, Heying Mao, Jing Xu, Mingguan Piao, and Jingshu Piao designed the study, carried out statistical analysis, drafted, and revised the manuscript. Lin Ma participated in the whole study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingshu Piao or Mingguan Piao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Mao, H., Xu, J. et al. Study on the Nasal Drug Delivery System of NMD Liposomes In Situ Thermosensitive Gel. AAPS PharmSciTech 24, 234 (2023). https://doi.org/10.1208/s12249-023-02679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02679-5

Keywords

Navigation