Skip to main content

Advertisement

Log in

Novel Sprayable Thermosensitive Benzydamine Hydrogels for Topical Application: Development, Characterization, and In Vitro Biological Activities

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Benzydamine hydrochloride (BZD) having analgesic, anesthetic, and anti-inflammatory effects is used orally or topically in the treatment of disorders such as joint inflammation and muscle pain. Within the scope of this study, sprayable thermosensitive BZD hydrogels were developed using thermoresponsive poloxamers to avoid systemic side effects and to provide better compliance for topical administration. Also, hydroxypropyl methyl cellulose (HPMC) was employed to improve the mechanical strength and bioadhesive properties of the hydrogel. The addition of BZD generally decreased the viscosity of the formulations (p < 0.05), while increasing the gelation temperature (p < 0.05). The formulations that did not have any clogs or leaks in the nozzle of the bottle during the spraying process were considered lead formulations. To spray the formulations easily, it was found that the viscosity at RT should be less than 200 mPa·s, and their gelation temperature should be between 26 and 34°C. Increasing HPMC and poloxamer improved bioadhesion. The amount of HPMC and poloxamers did not cause a significant change in the release characteristics of the formulations (p > 0.05); the release profiles of BZD from the formulations were similar according to model-independent kinetic (f2 > 50). HPMC and poloxamers had important roles in the accumulation of BZD in the skin. In vitro biological activity studies demonstrated that the formulations presented their anti-inflammatory activity with TNF-α inhibition but did not have any effect on the inhibition of COX enzymes as expected. As a result, thermosensitive hydrogels containing BZD might be an appropriate alternative, providing an advantage in terms of easier application compared to conventional gels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Ardizzoni A, Boaretto G, Pericolini E, Pinetti D, Capezzone de Joannon A, Durando L, et al. Effects of benzydamine and mouthwashes containing benzydamine on Candida albicans adhesion, biofilm formation, regrowth, and persistence. Clin Oral Investig. 2022;26:3613–25. https://doi.org/10.1007/s00784-021-04330-85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nicolatou-Galitis O, Bossi P, Orlandi E, Bensadoun R-J. The role of benzydamine in prevention and treatment of chemoradiotherapy-induced mucositis. Support Care Cancer. 2021;29:5701–9. https://doi.org/10.1007/s00520-021-06048-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quane PA, Graham GG, Ziegler JB. Pharmacology of benzydamine. Inflammopharmacology. 1998;6:95–107. https://doi.org/10.1007/s10787-998-0026-0.

    Article  PubMed  Google Scholar 

  4. Arpa MD, Yağcılar AP, Biltekin SN. Novel benzydamine hydrochloride and chlorhexidine gluconate loaded bioadhesive films for local treatment of buccal infections. J Drug Deliv Sci Technol. 2023;84. https://doi.org/10.1016/j.jddst.2023.104497.

  5. Marudova M, Zahariev N, Milenkova S, Pilicheva B, Viraneva A, Yovcheva T. Development and in-vitro characterization of benzydamine loaded chitosan nanoparticles. Macromol Symp. 2021;395:1–4. https://doi.org/10.1002/masy.202000279.

    Article  Google Scholar 

  6. Baldock GA, Brodie RR, Chasseaud LF, Taylor T, Walmsley LM, Catanese B. Pharmacokinetics of benzydamine after intravenous, oral, and topical doses to human subjects. Biopharm Drug Dispos. 1991;12:481–92. https://doi.org/10.1002/bdd.2510120702.

    Article  PubMed  Google Scholar 

  7. Pilicheva B, Uzunova Y, Bodurov I, Viraneva A, Exner G, Sotirov S, et al. Layer-by-layer self-assembly films for buccal drug delivery: the effect of polymer cross-linking. J Drug Deliv Sci Technol. 2020;59. https://doi.org/10.1016/j.jddst.2020.101897.

  8. Lisciani R, Barcellona PS, Silvestrini B. Researches on the topical activity of benzydamine. Eur J Pharmacol. 1968;3:157–62. https://doi.org/10.1016/0014-2999(68)90069-1.

    Article  PubMed  Google Scholar 

  9. Erol İ, Üstündağ Okur N, Orak D, Sipahi H, Aydın A, Özer Ö. Tazarotene-loaded in situ gels for potential management of psoriasis: biocompatibility, anti-inflammatory and analgesic effect. Pharm Dev Technol. 2020;25:909–18. https://doi.org/10.1080/10837450.2020.1765180.

    Article  PubMed  Google Scholar 

  10. Gholizadeh H, Messerotti E, Pozzoli M, Cheng S, Traini D, Young P, et al. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech. 2019;20:1–12. https://doi.org/10.1208/s12249-019-1517-6.

    Article  Google Scholar 

  11. Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers. 2022;14. https://doi.org/10.3390/polym14122379.

  12. Aksu NB, Yozgatlı V, Okur ME, Ayla Ş, Yoltaş A, Üstündağ Okur N. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J Drug Deliv Sci Technol. 2019;52:110–21. https://doi.org/10.1016/j.jddst.2019.04.015.

    Article  Google Scholar 

  13. Güven U, Yakut Y, Çakır N, Kayıran S. Thermosensitive in situ gel formulation and characterization studies of Sambucus ebulus L. extract. İstanbul J Pharm. 2023;53:30–8. https://doi.org/10.26650/IstanbulJPharm.2023.106621.

    Article  Google Scholar 

  14. Wong YL, Pandey M, Choudhury H, Lim WM, Bhattamisra SK, Gorain B. Development of in-situ spray for local delivery of antibacterial drug for hidradenitis suppurativa: investigation of alternative formulation. Polymers. 2021;13:1–18. https://doi.org/10.3390/polym13162770.

    Article  Google Scholar 

  15. Raza H, Shah SU, Ali Z, Khan AU, Rajput IB, Farid A, et al. In vitro and ex vivo evaluation of fluocinolone acetonide–acitretin-coloaded nanostructured lipid carriers for topical treatment of psoriasis. Gels. 2022;8:746. https://doi.org/10.3390/gels8110746.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–65. https://doi.org/10.1016/j.jconrel.2020.07.044.

    Article  PubMed  Google Scholar 

  17. Rençber S, Özcan Bülbül E, ÜstündağOkur N, Ay Şenyiğit Z. Preparation and detailed characterization of fusidic acid loaded in situ gel formulations for ophthalmic application. J Res Pharm. 2021;25:1–12. https://doi.org/10.35333/jrp.2021.291.

    Article  Google Scholar 

  18. Baloglu E, Karavana SY, Senyigit ZA, Guneri T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm Dev Technol. 2011;16:627–36. https://doi.org/10.3109/10837450.2010.508074.

    Article  PubMed  Google Scholar 

  19. Güven UM, Berkman MS, Şenel B, Yazan Y. Development and in vitro/in vivo evaluation of thermo-sensitive in situ gelling systems for ocular allergy. Brazilian J Pharm Sci. 2019;55. https://doi.org/10.1590/s2175-97902019000117511.

  20. Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75:186–93. https://doi.org/10.1016/j.ejpb.2010.02.011.

    Article  PubMed  Google Scholar 

  21. Barakat NS. In vitro and in vivo characteristics of a thermogelling rectal delivery system of etodolac. AAPS PharmSciTech. 2009;10:724–31. https://doi.org/10.1208/s12249-009-9261-y.

    Article  PubMed  PubMed Central  Google Scholar 

  22. da Silva JB, Cook MT, Bruschi ML. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydr Polym. 2020;240:116268. https://doi.org/10.1016/j.carbpol.2020.116268.

    Article  PubMed  Google Scholar 

  23. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design. Heliyon. 2020;6(11):e05365. https://doi.org/10.1016/j.heliyon.2020.e05365.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Popa L, Ghica MV, Popescu R, Irimia T, Dinu‐pîrvu CE. Development and optimization of chitosan‐hydroxypropyl methylcellulose in situ gelling systems for ophthalmic delivery of bupivacaine hydrochloride. Processes. 2021;9. https://doi.org/10.3390/pr9101694.

  25. Pandey P, Cabot PJ, Wallwork B, Panizza BJ, Parekh HS. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - a platform for therapeutic delivery to mucosal sinus tissue. Eur J Pharm Sci. 2017;96:499–507. https://doi.org/10.1016/j.ejps.2016.10.017.

    Article  PubMed  Google Scholar 

  26. Suriyaamporn P, Sahatsapan N, Patrojanasophon P, Opanasopit P, Kumpugdee-Vollrath M, Ngawhirunpat T. Optimization of in situ gel-forming chlorhexidine-encapsulated polymeric nanoparticles using design of experiment for periodontitis. AAPS PharmSciTech. 2023;24:161. https://doi.org/10.1208/s12249-023-02600-0.

    Article  PubMed  Google Scholar 

  27. Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4:1861–905. https://doi.org/10.3390/ma4101861.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bhowmik M, Kumari P, Sarkar G, Bain MK, Bhowmick B, Mollick MMR, et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol. 2013;62:117–23. https://doi.org/10.1016/j.ijbiomac.2013.08.024.

    Article  PubMed  Google Scholar 

  29. Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 2019;49:323–33. https://doi.org/10.1016/j.jddst.2018.12.005.

    Article  Google Scholar 

  30. UstundagOkur N, Yozgatli V, Senyigit Z. Formulation and detailed characterization of voriconazole loaded in situ gels for ocular application. Ankara Univ Eczac Fak Derg. 2020;44:33–49. https://doi.org/10.33483/jfpau.586590.

    Article  Google Scholar 

  31. Arpa MD, Yoltaş A, Onay Tarlan E, Şenyüz CŞ, Sipahi H, Aydın A, et al. New therapeutic system based on hydrogels for vaginal candidiasis management: formulation–characterization and in vitro evaluation based on vaginal irritation and direct contact test. Pharm Dev Technol. 2020;25:1238–48. https://doi.org/10.1080/10837450.2020.1809457. (Taylor & Francis).

    Article  PubMed  Google Scholar 

  32. Dogan A, Bascı NE. Development and validation of RP-HPLC and ultraviolet spectrophotometric methods of analysis for the quantitative determination of chlorhexidine gluconate and benzydamine hydrochloride in pharmaceutical dosage forms. Curr Pharm Anal. 2011;7:167–75. https://doi.org/10.2174/157341211796353228.

    Article  Google Scholar 

  33. ICH. ICH Harmonised tripartite guideline (2005) validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, 1-13. 2005.

  34. Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J. 2019;27:738–52. https://doi.org/10.1016/j.jsps.2019.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Çağlar EŞ, KaraotmarlıGüven G, ÜstündağOkur N. Preparation and characterization of carbopol based hydrogels containing dexpanthenol. Ankara Univ Eczac Fak Derg. 2023;47:6–6. https://doi.org/10.33483/jfpau.1195397.

    Article  Google Scholar 

  36. Çiftçi H, Arpa MD, Gülaçar İM, Özcan L, Ersoy B. Development and evaluation of mesoporous montmorillonite/magnetite nanocomposites loaded with 5-fluorouracil. Microporous Mesoporous Mater. 2020;303. https://doi.org/10.1016/j.micromeso.2020.110253.

  37. Ismail A, El-Biyally E, Sakran W. An innovative approach for formulation of rutin tablets targeted for colon cancer treatment. AAPS PharmSciTech. 2023;24:1–14. https://doi.org/10.1208/s12249-023-02518-7.

    Article  Google Scholar 

  38. Arpa MD, Üstündağ Okur N, Gök MK, Özgümüş S, Cevher E. Chitosan-based buccal mucoadhesive patches to enhance the systemic bioavailability of tizanidine. Int J Pharm. 2023;642:123168. https://doi.org/10.1016/j.ijpharm.2023.123168.

    Article  PubMed  Google Scholar 

  39. Arpa MD, Seçen İM, Erim ÜC, Hoş A, ÜstündağOkur N. Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: formulation, characterization, in vitro-ex vivo evaluation. Pharm Dev Technol. 2022;27:268–81. https://doi.org/10.1080/10837450.2022.2038620.

    Article  PubMed  Google Scholar 

  40. Üstündağ Okur N, Çağlar EŞ, Arpa MD, Karasulu HY. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm Dev Technol. 2017;22:500–10. https://doi.org/10.3109/10837450.2015.1131716.

    Article  PubMed  Google Scholar 

  41. Sahin Z, Biltekin SN, Yurttas L, Berk B, Özhan Y, Sipahi H, et al. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur J Med Chem. 2021;212. https://doi.org/10.1016/j.ejmech.2020.113125.

  42. Ertaş M, Biltekin SN, Berk B, Yurttaş L, Demirayak Ş. Synthesis of some 5,6-diaryl-1,2,4-triazine derivatives and investigation of their cyclooxygenase (COX) inhibitory activity. Phosphorus Sulfur Silicon Relat Elem. 2022;197:1123–35. https://doi.org/10.1080/10426507.2022.2062756. (Taylor & Francis).

    Article  Google Scholar 

  43. Trivedi MK, Mondal SC, Gangwar M, Jana S. Immunomodulatory potential of nanocurcumin-based formulation. Inflammopharmacology. 2017;25:609–19. https://doi.org/10.1007/s10787-017-0395-3.

    Article  PubMed  Google Scholar 

  44. Pagano C, Giovagnoli S, Perioli L, Tiralti MC, Ricci M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur J Pharm Sci. 2020;142. https://doi.org/10.1016/j.ejps.2019.105125.

  45. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154–62. https://doi.org/10.1016/j.addr.2012.09.012.

    Article  Google Scholar 

  46. Dahlizar S, Futaki M, Okada A, Kadhum WR, Todo H, Sugibayashi K. Design of a topically applied gel spray formulation with ivermectin using a novel low molecular weight gelling agent, palmitoyl-glycine-histidine, to treat scabies. Chem Pharm Bull. 2018;66:327–33. https://doi.org/10.1248/cpb.c17-00965.

    Article  Google Scholar 

  47. Hsin YK, Thangarajoo T, Choudhury H, Pandey M, Meng LW, Gorain B. Stimuli-responsive in situ spray gel of miconazole nitrate for vaginal candidiasis. J Pharm Sci. 2023;112:562–72. https://doi.org/10.1016/j.xphs.2022.09.002.

    Article  PubMed  Google Scholar 

  48. Kolawole OM, Cook MT. In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm. 2023;184:36–49. https://doi.org/10.1016/j.ejpb.2023.01.007.

    Article  PubMed  Google Scholar 

  49. Rincón M, Silva-Abreu M, Espinoza LC, Sosa L, Calpena AC, Rodríguez-Lagunas MJ, et al. Enhanced transdermal delivery of pranoprofen using a thermo-reversible hydrogel loaded with lipid nanocarriers for the treatment of local inflammation. Pharmaceuticals. 2022;15. https://doi.org/10.3390/ph15010022.

  50. Ban E, Park M, Jeong S, Kwon T, Kim EH, Jung K, et al. Poloxamer-based thermoreversible gel for topical delivery of emodin: influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules. 2017;22. https://doi.org/10.3390/molecules22020246.

  51. Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54–61. https://doi.org/10.1016/j.ejpb.2017.10.008.

    Article  PubMed  Google Scholar 

  52. Fathalla Z, Mustafa WW, Abdelkader H, Moharram H, Sabry AM, Alany RG. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv. 2022;29:374–85. https://doi.org/10.1080/10717544.2021.2023236.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013;93:261–7. https://doi.org/10.2340/00015555-1531.

    Article  PubMed  Google Scholar 

  54. Gözcü S, Polat KH. Thermosensitive in situ gelling system for dermal drug delivery of rutin. Turkish J Pharm Sci. 2022;20:78–83. https://doi.org/10.4274/tjps.galenos.2022.00334.

    Article  Google Scholar 

  55. Tuğcu-Demiröz F. Development of in situ poloxamer-chitosan hydrogels for vaginal drug delivery of benzydamine hydrochloride: textural, mucoadhesive and in vitro release properties. Marmara Pharm J. 2017;21:762–70. https://doi.org/10.12991/mpj.2017.3.

    Article  Google Scholar 

  56. Chen IC, Su CY, Chen PY, Hoang TC, Tsou YS, Fang HW. Investigation and characterization of factors affecting rheological properties of poloxamer-based thermo-sensitive hydrogel. Polymers. 2022;14. https://doi.org/10.3390/polym14245353.

  57. Hirun N, Kraisit P, Tantishaiyakul V. Thermosensitive polymer blend composed of poloxamer 407, poloxamer 188 and polycarbophil for the use as mucoadhesive in situ gel. polymers. 2022;14. https://doi.org/10.3390/polym14091836.

  58. Akkari ACS, Papini JZB, Garcia GK, Franco MKKD, Cavalcanti LP, Gasperini A, et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: physico-chemical characterization and pharmacological evaluation. Mater Sci Eng C. 2016;68:299–307. https://doi.org/10.1016/j.msec.2016.05.088.

    Article  Google Scholar 

  59. Soliman GM, Fetih G, Abbas AM. Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation. Drug Dev Ind Pharm. 2017;43:399–408. https://doi.org/10.1080/03639045.2016.1254239.

    Article  PubMed  Google Scholar 

  60. Parhi R. Development and optimization of Pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. J Drug Deliv Sci Technol. 2016;36:23–33. https://doi.org/10.1016/j.jddst.2016.09.004.

    Article  Google Scholar 

  61. Choi H-G, Jung J-H, Ryu J-M, Yoon S-J, Oh Y-K, Kim C-K. Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int J Pharm. 1998;165:33–44. https://doi.org/10.1016/S0378-5173(97)00386-4.

    Article  Google Scholar 

  62. Khan S, Minhas MU, Tekko IA, Donnelly RF, Thakur RRS. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv Transl Res. 2019;9:764–82. https://doi.org/10.1007/s13346-019-00617-2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Annaji M, Mita N, Rangari S, Aldawsari MF, Alsaqr A, Poudel I, et al. Enhanced topical Co-delivery of acyclovir and lidocaine gel formulation across dermatomed human skin. AAPS PharmSciTech. 2022;23. https://doi.org/10.1208/s12249-022-02458-8.

  64. Bhuyan MM, Okabe H, Hidaka Y, Dafader NC, Rahman N, Hara K. Synthesis of pectin-N, N-dimethyl acrylamide hydrogel by gamma radiation and application in drug delivery (in vitro). J Macromol Sci Part A Pure Appl Chem. 2018;55:369–76. https://doi.org/10.1080/10601325.2018.1442177.

    Article  Google Scholar 

  65. Al homsi R, Eltahir S, Jagal J, Ali Abdelkareem M, Ghoneim MM, Rawas-Qalaji MM, et al. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int J Pharm. 2022;621:121786. https://doi.org/10.1016/j.ijpharm.2022.121786.

    Article  PubMed  Google Scholar 

  66. Sathyanarayana SD, Rompicherla NC, Vadakkepushpakath AN, Nayak P. Development of thermosensitive ophthalmic in situ gels of bimatoprost for glaucoma therapy. Indian J Pharm Educ Res. 2020;54:S154-62. https://doi.org/10.5530/ijper.54.2s.71.

    Article  Google Scholar 

  67. Pham DT, Phewchan P, Navesit K, Chokamonsirikun A, Khemwong T, Tiyaboonchai W. Development of metronidazole-loaded in situ thermosensitive hydrogel for periodontitis treatment. Turk J Pharm Sci. 2021;18:510–6. https://doi.org/10.4274/tjps.galenos.2020.09623.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guerra-Ponce WL, Gracia-Vásquez SL, González-Barranco P, Camacho-Mora IA, Gracia-Vásquez YA, Orozco-Beltrán E, et al. In vitro evaluation of sustained released matrix tablets containing ibuprofen: a model poorly water-soluble drug. Braz J Pharm Sci. 2016;52:751–60. https://doi.org/10.1590/S1984-82502016000400020.

    Article  Google Scholar 

  69. Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. Novel drug delivery system of luliconazole - formulation and characterisation. J Drug Deliv Sci Technol. 2020;55:101302. https://doi.org/10.1016/j.jddst.2019.101302.

    Article  Google Scholar 

  70. Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep. 2017;7:1–15. https://doi.org/10.1038/srep41503.

    Article  Google Scholar 

  71. Feyissa Z, Edossa GD, Bedasa TB, Inki LG. Fabrication of pH-responsive chitosan/polyvinylpyrrolidone hydrogels for controlled release of metronidazole and antibacterial properties. Int J Polym Sci. 2023;1205092. https://doi.org/10.1155/2023/1205092.

  72. Barakat NS. Optimization of physical characterization, skin permeation of naproxen from glycofurol-based topical gel. Asian J Pharm. 2010;4:154–62. https://doi.org/10.22377/ajp.v4i2.140.

    Article  Google Scholar 

  73. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–70. https://doi.org/10.3390/pharmaceutics7040438.

    Article  PubMed  Google Scholar 

  74. Latif MS, Azad AK, Nawaz A, Rashid SA, Rahman MH, Al Omar SY, et al. Ethyl cellulose and hydroxypropyl methyl cellulose blended methotrexate-loaded transdermal patches: In vitro and ex vivo. Polymers. 2021;13. https://doi.org/10.3390/polym13203455.

  75. Binder L, Mazál J, Petz R, Klang V, Valenta C. The role of viscosity on skin penetration from cellulose ether-based hydrogels. Ski Res Technol. 2019;25:725–34. https://doi.org/10.1111/srt.12709.

    Article  Google Scholar 

  76. Mehravaran M, Haeri A, Rabbani S, Mortazavi SA, Torshabi M. Preparation and characterization of benzydamine hydrochloride-loaded lyophilized mucoadhesive wafers for the treatment of oral mucositis. J Drug Deliv Sci Technol. 2022;78. https://doi.org/10.1016/j.jddst.2022.103944.

Download references

Acknowledgements

The authors would like to thank Humanis (Turkey) for donating benzydamine hydrochloride and BASF Chemicals (Germany) for donating P407, P188, and HPMC K4M.

Author information

Authors and Affiliations

Authors

Contributions

MDA: supervision, project administration, investigation, methodology, funding acquisition, writing—original draft, and writing—review and editing; EEK: investigation and methodology; SNB: investigation, methodology, funding acquisition, and writing—original draft

Corresponding author

Correspondence to Muhammet Davut Arpa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpa, M.D., Kesmen, E.E. & Biltekin, S.N. Novel Sprayable Thermosensitive Benzydamine Hydrogels for Topical Application: Development, Characterization, and In Vitro Biological Activities. AAPS PharmSciTech 24, 214 (2023). https://doi.org/10.1208/s12249-023-02674-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02674-w

Keywords

Navigation