Skip to main content

Advertisement

Log in

The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanoneedles (NN) are growing rapidly as a means of navigating biological membranes and delivering therapeutics intracellularly. Nanoneedle arrays (NNA) are among the most potential resources to achieve therapeutic effects by administration of drugs through the skin. Although this is based on well-established approaches, its implementations are rapidly developing as an important pharmaceutical and biological research phenomenon. This study intends to provide a broad overview of current NNA research, with an emphasis on existing approaches, applications, and types of compounds released by these systems. A nanoneedle-based delivery device with great spatial and temporal accuracy, minimal interference, and low toxicity could transfer biomolecules into living organisms. Due to its vast potential, NN has been widely used as a capable transportation system of many therapeutic active substances, from cancer therapy, vaccine delivery, cosmetics, and bio-sensing nanocarrier drugs to genes. The use of nanoneedles for drug delivery offers new opportunities for the rapid, targeted, and exact administration of biomolecules into cell membranes for high-resolution research of biological systems, and it can treat a wide range of biological challenges. As a result, the literature has analyzed existing patents to emphasize the status of NNA in biological applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Meng X, Zhang Z, Li L. Micro/nano needles for advanced drug delivery. Prog Nat Sci Mater Int. 2020;30:589–96. https://doi.org/10.1016/j.pnsc.2020.09.016.

    Article  CAS  Google Scholar 

  2. Shoaib A, Azmi L, Pal S, Alqahtani SS, Rahamathulla M, Hani U, Alshehri S, Ghoneim MM, Shakeel F. Integrating nanotechnology with naturally occurring phytochemicals in neuropathy induced by diabetes. J Mol Liq 2021: 118189. https://doi.org/10.1016/J.MOLLIQ.2021.118189

  3. Larrañeta E, McCrudden MTC, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33:1055–73. https://doi.org/10.1007/s11095-016-1885-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon nanotubes: current perspectives on diverse applications in targeted drug delivery and therapies. Materials. 2021;14:6707. https://doi.org/10.3390/ma14216707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Microneedle-based delivery devices for cancer therapy: a review. Pharmacol Res. 2019;148:104438. https://doi.org/10.1016/J.PHRS.2019.104438.

    Article  PubMed  CAS  Google Scholar 

  6. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58. https://doi.org/10.1016/J.BIOPHA.2018.10.078.

    Article  PubMed  CAS  Google Scholar 

  7. Shravanth SH, Osmani RAM, Jyothi SL, Anupama VP, Rahamathulla M, Gangadharappa HV. Microneedles-based drug delivery for the treatment of psoriasis. J Drug Deliv Sci Technol. 2021;64:102668. https://doi.org/10.1016/J.JDDST.2021.102668.

    Article  CAS  Google Scholar 

  8. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8. https://doi.org/10.1038/nbt.1504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kim M, Yoo Y, Kim J. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors. J Power Sources. 2014;265:214–22.

    Article  CAS  Google Scholar 

  10. Yum K, Wang N, Yu MF. Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale. 2010;2:363–72.

    Article  PubMed  CAS  Google Scholar 

  11. He G, Hu N, Xu AM, Li X, Zhao Y, Xie X. Nanoneedle platforms: the many ways to pierce the cell membrane. Adv Funct Mater. 2020;30:1909890.

    Article  CAS  Google Scholar 

  12. Lu JG, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mater Sci Eng R Reports. 2006;52:49–91.

    Article  Google Scholar 

  13. Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq. 2021; 118008. https://doi.org/10.1016/J.MOLLIQ.2021.118008

  14. Agüeros M, Espuelas S, Esparza I, Calleja P, Peñuelas I, Ponchel G, Irache JM. Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin Drug Deliv. 2011;8:721–34. https://doi.org/10.1517/17425247.2011.572069.

    Article  PubMed  CAS  Google Scholar 

  15. Chiappini, C.; Almeida, C. Silicon nanoneedles for drug delivery. Semicond Silicon Nanowires Biomed Appl. 2014;144–167. https://doi.org/10.1533/9780857097712.2.144

  16. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447:12–21. https://doi.org/10.1016/J.IJPHARM.2013.02.040.

    Article  PubMed  CAS  Google Scholar 

  17. Wang TF, Kasting GB, Nitsche JM. A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of Physicochemical Parameters, and Application to a Large Permeability Database. J Pharm Sci. 2007;96:3024–51. https://doi.org/10.1002/JPS.20883.

    Article  PubMed  CAS  Google Scholar 

  18. Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77:465–8. https://doi.org/10.1016/J.EJPB.2010.10.015.

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi K, Mitsui T, Aso Y, Sugibayashi K. Structure-permeability relationship analysis of the permeation barrier properties of the stratum corneum and viable epidermis/dermis of rat skin. J Pharm Sci. 2008;97(10):4391–403. https://doi.org/10.1002/jps.21330.

    Article  PubMed  CAS  Google Scholar 

  20. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56:603–18. https://doi.org/10.1016/j.addr.2003.10.025.

    Article  PubMed  CAS  Google Scholar 

  21. Schoellhammer CM, Blankschtein D, Langer R. Skin Permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11:393–407. https://doi.org/10.1517/17425247.2014.875528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu Z, Nie J, Miao B, Li J, Cui Y, Wang S, Zhang X, Zhao G, Deng Y, Wu Y. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv Mater. 2019;31:1807795.

    Article  Google Scholar 

  23. Wen R, Zhang A, Liu D, Feng J, Yang J, Xia D, Wang J, Li C, Zhang T, Hu N. Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl Mater Interfaces. 2019;11:43936–48.

    Article  PubMed  CAS  Google Scholar 

  24. Kathuria H, Kochhar JS, Kang L. Micro and nanoneedles for drug delivery and biosensing. Ther Deliv. 2018;9(7):489–92. https://doi.org/10.4155/tde-2018-0012.

    Article  PubMed  CAS  Google Scholar 

  25. Sun M, Duan X. Recent advances in micro/nanoscale intracellular delivery. Nanotechnol Precis Eng. 2020;3:18–31.

    Article  CAS  Google Scholar 

  26. Paik S-J, Park S, Zarnitsyn V, Choi S, Guo XD, Prausnitz MR, Allen MG. A highly dense nanoneedle array for intracellular gene delivery. In Proceedings of the Hilton Head Workshop, South Carolina; 2012; pp. 149–152.

  27. Yan L, Zhang J, Lee C, Chen X. Micro-and nanotechnologies for intracellular delivery. Small. 2014;10:4487–504.

    Article  PubMed  CAS  Google Scholar 

  28. Shinde P, Kumar A, Dey K, Mohan L, Kar S, Barik TK, Sharifi-Rad J, Nagai M, Santra TS. Physical approaches for drug delivery: an overview. Deliv Drugs 2020, 161–190.

  29. Zhu X, Kwok SY, Yuen MF, Yan L, Chen W, Yang Y, Wang Z, Yu KN, Zhu G, Zhang W. Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. J Mater Sci. 2015;50:7800–7.

    Article  CAS  Google Scholar 

  30. Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc. 2021, 1–25.

  31. Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery : a systematic review. Drug Dev Ind Pharm. 2019;45:188–201. https://doi.org/10.1080/03639045.2018.1539497.

    Article  PubMed  CAS  Google Scholar 

  32. Shende P, Sardesai M, Gaud RS. Micro to nanoneedles: a trend of modernized transepidermal drug delivery system. Artif Cells Nanomed Biotechnol. 2018;46:19–25.

    Article  PubMed  CAS  Google Scholar 

  33. Pierre MB, Rossetti FC. Microneedle-based drug delivery systems for transdermal route. Curr Drug Targets. 2014;15(3):281–91. https://doi.org/10.2174/13894501113146660232.

    Article  PubMed  CAS  Google Scholar 

  34. Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, Gowrav MP, Alshehri S, Ghoneim MM, Alshlowi A, Gowda DV. Smart nanocarriers as an emerging platform for cancer therapy: a review. Molecules. 2022;27:146. https://doi.org/10.3390/molecules27010146.

    Article  CAS  Google Scholar 

  35. Chiappini C, Martinez JO, De Rosa E, Almeida CS, Tasciotti E, Stevens MM. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano. 2015;9:5500–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jiang W, Kim BYS, Rutka JT, Chan WCW. Advances and challenges of nanotechnology-based drug. Expert Opin Drug Deliv. 2007:621–634.

  37. Xu Y, Wang H. A novel fabrication method of silicon nano-needles using MEMS TMAH etching techniques. Nanotechnology. 2011. https://doi.org/10.1088/0957-4484/22/12/125301.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frascella F, Ricciardi C. Functionalization protocols of silicon micro/nano-mechanical biosensors methods. Mol Biol. 2013;1025:109–15. https://doi.org/10.1007/978-1-62703-462-3_8.

    Article  CAS  Google Scholar 

  39. Ogundele M, Okafor HK. Transdermal drug delivery : microneedles, their fabrication and current trends in delivery methods. J Pharm Res Intern. 2017;18:1–14. https://doi.org/10.9734/JPRI/2017/36164.

    Article  Google Scholar 

  40. Gopal S, Chiappini C, Penders J, Leonardo V, Seong H, Rothery S, Korchev Y, Shevchuk A, Stevens MM. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv Mater. 2019;31:1806788.

    Article  Google Scholar 

  41. Yang L-X, Zhu Y-J, Wang W-W, Tong H, Ruan M-L. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J Phys Chem B. 2006;110:6609–14.

    Article  PubMed  CAS  Google Scholar 

  42. Liu Y, Liao L, Li J, Pan C. From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties. J Phys Chem C. 2007;111:5050–6.

    Article  CAS  Google Scholar 

  43. Červenka J, Ledinský M, Stuchlík J, Stuchlíková H, Bakardjieva S, Hruška K, Fejfar A, Kočka J. The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition. Nanotechnology. 2010;21: 415604.

    Article  PubMed  Google Scholar 

  44. Kumar S, Kim G-H, Sreenivas K, Tandon RP. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles. J Phys Condens Matter. 2007;19: 472202.

    Article  Google Scholar 

  45. Gonzalez-Chavarri J, Parellada-Monreal L, Castro-Hurtado I, Castaño E, Mandayo GG. ZnO nanoneedles grown on chip for selective NO2 detection indoors. Sensors Actuators B Chem. 2018;255:1244–53.

    Article  CAS  Google Scholar 

  46. Tsuruhara S, Kubota Y, Kubo H, Sawahata H, Yamagiwa S, Idogawa S, Kawano T. Nanoneedle-electrode array packaged with amplifiers for recording biological-signals with a high voltage gain. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII); IEEE, 2019; pp. 1784–1787.

  47. Li J-M. High-density se nanoneedles having no catalyst tips quasi-vertically grown on quartz substrates via destructive thermal evaporation. Cryst Growth Des. 2009;9:4171–5.

    Article  CAS  Google Scholar 

  48. Goryu A, Ikedo A, Ishida M, Kawano T. Nanoscale sharpening tips of vapor–liquid–solid grown silicon microwire arrays. Nanotechnology. 2010;21: 125302.

    Article  PubMed  Google Scholar 

  49. Chiappini C, De Rosa E, Martinez JO, Campagnolo P, Almeida C, Tasciotti E, Stevens M. Porous silicon nanoneedles by metal assisted chemical etch for intracellular sensing and delivery. ECS Trans. 2015;69:63.

    Article  CAS  Google Scholar 

  50. Parida B, Choi J, Lim G, Park S, Kim K. Formation of nanotextured surfaces on microtextured Si solar cells by metal-assisted chemical etching process. J Nanosci Nanotechnol. 2014;14:9224–31.

    Article  PubMed  CAS  Google Scholar 

  51. Chiappini C, De Rosa E, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14:532–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dai J, Gong J, Kong N, Yao Y. Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale. 2020;12:12395–404.

    Article  PubMed  CAS  Google Scholar 

  53. Romano L, Stampanoni M. Microfabrication of X-Ray optics by metal assisted chemical etching: a review. Micromachines. 2020;11:589.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsumoto T, Okamoto M. Ferroelectric 180° Aa nanostripe and nanoneedle domains in thin BaTiO 3 films prepared with focused-ion beam. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:2127–33.

    Article  PubMed  Google Scholar 

  55. Ran G, Chen N, Qiang R, Wang L, Li N, Lian J. Surface morphological evolution and nanoneedle formation of 18Cr-ODS steel by focused ion beam bombardment. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2015;356:103–7.

    Article  Google Scholar 

  56. Ran G, Liu X, Wu J, Zu X, Wang L. The effect of surface roughness on self-assembly tungsten nanoneedles induced by focused Ga+ Ion beam bombardment. Appl Surf Sci. 2012;258:5553–7.

    Article  CAS  Google Scholar 

  57. Han S, Nakamura C, Obataya I, Nakamura N, Miyake J. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem Biophys Res Commun. 2005;332:633–9.

    Article  PubMed  CAS  Google Scholar 

  58. Langford RM, Nellen PM, Gierak J, Fu Y. Focused ion beam micro-and nanoengineering. MRS Bull. 2007;32:417–23.

    Article  CAS  Google Scholar 

  59. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron. 2005;20:1652–5.

    Article  PubMed  CAS  Google Scholar 

  60. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 2005;5:27–30.

    Article  PubMed  CAS  Google Scholar 

  61. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. Iscience. 2020:102012.

  62. Kavaldzhiev MN, Perez JE, Sougrat R, Bergam P, Ravasi T, Kosel J. Inductively actuated micro needles for on-demand intracellular delivery. Sci Rep. 2018;8:1–9.

    Article  CAS  Google Scholar 

  63. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23.

    Article  PubMed  CAS  Google Scholar 

  64. Park S, Nguyen D-V, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine. 2020;16:335–49.

    Article  Google Scholar 

  65. Van Toan N, Tuoi TTK, Inomata N, Toda M, Ono T. Aluminum doped zinc oxide deposited by atomic layer deposition and its applications to micro/nano devices. Sci Rep. 2021;11:1–12.

    Google Scholar 

  66. Pires LR, Gaspar J. Micro and nano-needles as innovative approach in nanomedicine. In Nanostructured Biomaterials for Regenerative Medicine; Elsevier, 2020; pp. 379–406.

  67. Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R, Yoon M-H, Sutton A, Jorgolli M, Gertner RS, Gujral TS. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci. 2010;107:1870–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lou H-Y, Zhao W, Zeng Y, Cui B. The role of membrane curvature in nanoscale topography-induced intracellular signaling. Acc Chem Res. 2018;51:1046–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Han S-W, Nakamura C, Kotobuki N, Obataya I, Ohgushi H, Nagamune T, Miyake J. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomed Nanotechnol Biol Med. 2008;4:215–25.

    Article  CAS  Google Scholar 

  70. Chiappini C. Nanoneedle-based sensing in biological systems. ACS Sensors. 2017;2:1086–102.

    Article  PubMed  CAS  Google Scholar 

  71. Klein KL, Melechko AV, Rack PD, Fowlkes JD, Meyer HM, Simpson ML. Cu–Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon N Y. 2005;43:1857–63.

    Article  CAS  Google Scholar 

  72. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Direct insertion of proteins into a living cell using an atomic force microscope with a nanoneedle. NanoBiotechnology. 2005;1:347–52.

    Article  CAS  Google Scholar 

  73. McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology. 2003;14:551.

    Article  CAS  Google Scholar 

  74. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J. A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron. 2005;20:2120–5.

    Article  PubMed  CAS  Google Scholar 

  75. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc. 2007;129:7228–9.

    Article  PubMed  CAS  Google Scholar 

  76. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol. 2008;3:151–7.

    Article  PubMed  CAS  Google Scholar 

  77. Derosa MR, Monreal C, Schnitzer M, W Alsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;2010(5):91.

    Article  Google Scholar 

  78. Shen H, You J, Zhang G, Ziemys A, Li Q, Bai L, Deng X, Erm DR, Liu X, Li C. Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater. 2012;1:84–9.

    Article  PubMed  CAS  Google Scholar 

  79. Wu T, Pi M, Zhang D, Chen S. 3D structured porous CoP 3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. J Mater Chem A. 2016;4:14539–44.

    Article  CAS  Google Scholar 

  80. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010;70:3687–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Xue X-Y, Yuan S, Xing L-L, Chen Z-H, He B, Chen Y-J. Porous Co 3 O 4 Nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Chem Commun. 2011;47:4718–20.

    Article  CAS  Google Scholar 

  82. Ambrogi V, Perioli L, Pagano C, Marmottini F, Moretti M, Mizzi F, Rossi C. Econazole nitrate-loaded MCM-41 for an antifungal topical powder formulation. J Pharm Sci. 2010;99:4738–45.

    Article  PubMed  CAS  Google Scholar 

  83. Xu J, Wang L, Sun Y, Zhang J, Zhang C, Zhang M. Fabrication of porous MgCo2O4 nanoneedle arrays/Ni foam as an advanced electrode material for asymmetric supercapacitors. J Alloys Compd. 2019;779:100–7.

    Article  CAS  Google Scholar 

  84. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto V-P. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control release. 2005;108:362–74.

    Article  PubMed  CAS  Google Scholar 

  85. Xue M, Zhong X, Shaposhnik Z, Qu Y, Tamanoi F, Duan X, Zink JI. PH-Operated mechanized porous silicon nanoparticles. J Am Chem Soc. 2011;133:8798–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen C, Ye M, Zhang N, Wen X, Zheng D, Lin C. Preparation of hollow Co 9 S 8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells. J Mater Chem A. 2015;3:6311–4.

    Article  CAS  Google Scholar 

  87. VanDersarl JJ, Xu AM, Melosh NA. Nanostraws for direct fluidic intracellular access. Nano Lett. 2012;12:3881–6.

    Article  PubMed  CAS  Google Scholar 

  88. Huang Y, Zhao Y, Bao J, Lian J, Cheng M, Li H. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors. J Alloys Compd. 2019;772:337–47.

    Article  CAS  Google Scholar 

  89. Peer E, Artzy-Schnirman A, Gepstein L, Sivan U. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano. 2012;6:4940–6.

    Article  PubMed  CAS  Google Scholar 

  90. Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M. Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy. 2015;16:71–80.

    Article  CAS  Google Scholar 

  91. Moosavifard SE, Fani S, Rahmanian M. Hierarchical CuCo 2 S 4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun. 2016;52:4517–20.

    Article  CAS  Google Scholar 

  92. Kolhar P, Doshi N, Mitragotri S. Polymer nanoneedle-mediated intracellular drug delivery. Small. 2011;7:2094–100.

    Article  PubMed  CAS  Google Scholar 

  93. Schröder T, Niemeier N, Afonin S, Ulrich AS, Krug HF, Bräse S. Peptoidic amino-and guanidinium-carrier systems: targeted drug delivery into the cell cytosol or the nucleus. J Med Chem. 2008;51:376–9.

    Article  PubMed  Google Scholar 

  94. Zhang Z, Cao W, Jin H, Lovell JF, Yang M, Ding L, Chen J, Corbin I, Luo Q, Zheng G. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew Chemie Int Ed. 2009;48:9171–5.

    Article  CAS  Google Scholar 

  95. Yan L, Yang Y, Zhang W, Chen X. Advanced materials and nanotechnology for drug delivery. Adv Mater. 2014;26:5533–40.

    Article  PubMed  CAS  Google Scholar 

  96. Wu S, Yang X, Lu Y, Fan Z, Li Y, Jiang Y, Hou Z. A green approach to dual-drug nanoformulations with targeting and synergistic effects for cancer therapy. Drug Deliv. 2017;24:51–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wakure BS, Bhatia NM, Syed HB. Noninvasive cellular internalization of silver molecules by chitosan nanoneedles: a novel nanocarrier. J Biomol Struct Dyn. 2016;34:971–82.

    Article  PubMed  CAS  Google Scholar 

  98. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A. MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem. 2008;130:917–42.

    Article  CAS  Google Scholar 

  99. Matsumoto D, Sathuluri RR, Kato Y, Silberberg YR, Kawamura R, Iwata F, Kobayashi T, Nakamura C. Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci Rep. 2015;5:1–9.

    Article  Google Scholar 

  100. Hilder TA, Hill JM. Modeling the loading and unloading of drugs into nanotubes. Small. 2009;5:300–8.

    Article  PubMed  CAS  Google Scholar 

  101. Chen X. Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev. 2018;127:85–105.

    Article  PubMed  CAS  Google Scholar 

  102. Meng F, Wang Y, Chen Z, Hu J, Lu G, Ma W. Synthesis of CQDs@ FeOOH nanoneedles with abundant active edges for efficient electro-catalytic degradation of levofloxacin: degradation mechanism and toxicity assessment. Appl Catal B Environ. 2021;282: 119597.

    Article  CAS  Google Scholar 

  103. Liu X, Li C, Han S, Han J, Zhou C. Synthesis and electronic transport studies of CdO nanoneedles. Appl Phys Lett. 2003;82:1950–2.

    Article  CAS  Google Scholar 

  104. Rajesh R, Iyer SS, Ezhilan J, Kumar SS, Venkatesan R. Graphene oxide supported copper oxide nanoneedles: an efficient hybrid material for removal of toxic azo dyes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;166:49–55.

    Article  CAS  Google Scholar 

  105. Liu X, Su H, Shi W, Liu Y, Sun Y, Ge D. Functionalized poly (pyrrole-3-carboxylic acid) nanoneedles for dual-imaging guided PDT/PTT combination therapy. Biomaterials. 2018;167:177–90.

    Article  PubMed  CAS  Google Scholar 

  106. Zhao J, Chen G, Pang X, Zhang P, Hou X, Chen P, Xie Y-W, He C-Y, Wang Z, Chen Z-Y. Calcium phosphate nanoneedle based gene delivery system for cancer genetic immunotherapy. Biomaterials. 2020;250: 120072.

    Article  PubMed  CAS  Google Scholar 

  107. Xu X, Hou S, Wattanatorn N, Wang F, Yang Q, Zhao C, Yu X, Tseng H-R, Jonas SJ, Weiss PS. Precision-guided nanospears for targeted and high-throughput intracellular gene delivery. ACS Nano. 2018;12:4503–11.

    Article  PubMed  CAS  Google Scholar 

  108. Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: a review. Chinese Chem Lett. 2018;29:1713–24.

    Article  CAS  Google Scholar 

  109. Suryavanshi AP, Hu J, Yu M. Meniscus-controlled continuous fabrication of arrays and rolls of extremely long micro-and nano-fibers. Adv Mater. 2008;20:793–6.

    Article  CAS  Google Scholar 

  110. Yum K, Na S, Xiang Y, Wang N, Yu M-F. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett. 2009;9:2193–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kim H-J, Kim H, Kim JJ, Myeong NR, Kim T, Park T, Kim E, Choi J, Lee J, An S. Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process. Sci Adv. 2018;4: e1701581.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jiang Y, Ma J, Lv J, Ma H, Xia H, Wang J, Yang C, Xue M, Li G, Zhu N. Facile wearable vapor/liquid amphibious methanol sensor. ACS sensors. 2018;4:152–60.

    Article  Google Scholar 

  113. Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev. 2017;46:734–60.

    Article  PubMed  CAS  Google Scholar 

  114. Yum K, Yu M-F, Wang N, Xiang YK. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim Biophys Acta (BBA) General Subj. 2011;1810:330–8.

    Article  CAS  Google Scholar 

  115. Chen X, Kis A, Zettl A, Bertozzi CR. A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci. 2007;104:8218–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Stephens DJ, Pepperkok R. The many ways to cross the plasma membrane. Proc Natl Acad Sci. 2001;98:4295–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci. 2008;105:6626–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kim HJ, Kim H, Kim JJ, Myeong NR, Kim T, Park T, Kim E, Choi JY, Lee J, An S, Sul WJ. Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process. Sci Adv. 2018;4(3): e1701581.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bano K, Bajwa SZ, Bassous NJ, Webster TJ, Shaheen A, Taj A, Hameed S, Tehseen B, Dai Z, Iqbal MZ, Khan WS. Development of biocompatible 1D CuO nanoneedles and their potential for sensitive, mass-based detection of anti-tuberculosis drugs. Appl Nanosci. 2019;9(6):1341–51.

    Article  CAS  Google Scholar 

  121. Yang X, Wu S, Xie W, Cheng A, Yang L, Hou Z, Jin X. Dual-drug loaded nanoneedles with targeting property for efficient cancer therapy. J Nanobiotechnology. 2017;15(1):1–1.

    Article  Google Scholar 

  122. Nitayavardhana S, Wanitphakdeedecha R, Ng JNC, Eimpunth S, Manuskiatti W. The efficacy and safety of fractional radiofrequency nanoneedle system in the treatment of atrophic acne scars in Asians. J Cosmet Dermatol. 2020;19:1636–41.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pastrello B, Paracatu LC, de Carvalho Bertozo L, Paino IMM, Lisboa-Filho PN, Ximenes VF. Synthesis and evaluation of the potential deleterious effects of ZnO nanomaterials (nanoneedles and nanoflowers) on blood components, including albumin, erythrocytes and human isolated primary neutrophils. J Nanoparticle Res. 2016;18:1–12.

    Article  CAS  Google Scholar 

  124. Tripathy N, Ahmad R, Song JE, Ko HA, Hahn Y-B, Khang G. Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Mater Lett. 2014;136:171–4.

    Article  CAS  Google Scholar 

  125. Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C. 2019;103:109717. https://doi.org/10.1016/J.MSEC.2019.05.002.

    Article  CAS  Google Scholar 

  126. Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering micro–nanomaterials for biomedical translation. Adv NanoBiomed Res. 2021;1:2100002.

    Article  CAS  Google Scholar 

  127. Chong KU, Xuan SH, Yoon YM, Kim S, Choi BK, Lee SH, Park SN, Lee JS. Characteristics of non-nano needle type zinc oxide and its application in sunscreen cosmetics. J Soc Cosmet Sci Korea. 2021;47:1–7.

    Google Scholar 

  128. Lee C, Eom YA, Yang H, Jang M, Jung SU, Park YO, Lee SE, Jung H. Skin barrier restoration and moisturization using horse oil-loaded dissolving microneedle patches. Skin Pharmacol Physiol. 2018;31:163–71.

    Article  PubMed  CAS  Google Scholar 

  129. Kochhar JS, Tan JJY, Kwang YC, Kang L. Recent trends in microneedle development & applications in medicine and cosmetics (2013–2018). In Microneedles for Transdermal Drug Delivery; Springer, 2019; pp. 95–144.

  130. Kim M, Yang H, Kim H, Jung H, Jung H. Novel cosmetic patches for wrinkle improvement: retinyl retinoate-and ascorbic acid-loaded dissolving microneedles. Int J Cosmet Sci. 2014;36:207–12.

    Article  PubMed  CAS  Google Scholar 

  131. Park SY, Lee HU, Lee Y-C, Kim GH, Park EC, Han SH, Lee JG, Choi S, Heo NS, Kim DL. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Mater Sci Eng C. 2014;42:757–62.

    Article  CAS  Google Scholar 

  132. Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5:253–9.

    PubMed  PubMed Central  Google Scholar 

  133. Hutton ARJ, Quinn HL, McCague PJ, Jarrahian C, Rein-Weston A, Coffey PS, Gerth-Guyette E, Zehrung D, Larrañeta E, Donnelly RF. Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int J Pharm. 2018;541:56–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Lahiji SF, Seo SH, Kim S, Dangol M, Shim J, Li CG, Ma Y, Lee C, Kang G, Yang H. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials. 2018;167:69–79.

    Article  Google Scholar 

  135. Jeong H-R, Kim J-Y, Kim S-N, Park J-H. Local dermal delivery of cyclosporin a, a hydrophobic and high molecular weight drug, using dissolving microneedles. Eur J Pharm Biopharm. 2018;127:237–43.

    Article  PubMed  CAS  Google Scholar 

  136. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, Zhai Y, Wu C, Xu Y. Intradermal delivery of STAT3 SiRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8:1–11.

    Google Scholar 

  137. Lahiji SF, Jang Y, Huh I, Yang H, Jang M, Jung H. Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes. Sci Rep. 2018;8:1–9.

    Google Scholar 

  138. Chen M-C, Lai K-Y, Ling M-H, Lin C-W. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 2018;65:66–75.

    Article  PubMed  CAS  Google Scholar 

  139. Cole G, Ali AA, McCrudden CM, McBride JW, McCaffrey J, Robson T, Kett VL, Dunne NJ, Donnelly RF, McCarthy HO. DNA vaccination for cervical cancer: strategic optimisation of rala mediated gene delivery from a biodegradable microneedle system. Eur J Pharm Biopharm. 2018;127:288–97.

    Article  PubMed  CAS  Google Scholar 

  140. Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res. 2018;35:1–20.

    Article  CAS  Google Scholar 

  141. Huang Y, Yang P. Application of Cross-linked and non-cross-linked hyaluronic acid nano-needles in cosmetic surgery. Int J Anal Chem. 2022;2022:4565260.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Nitayavardhana S, Wanitphakdeedecha R, Ng JNC, Eimpunth S, Manuskiatti W. The efficacy and safety of fractional radiofrequency nanoneedle system in the treatment of atrophic acne scars in Asians. J Cosmet Dermatol. 2020;19(7):1636–41.

    Article  PubMed  PubMed Central  Google Scholar 

  143. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16:333–43.

    Article  PubMed  Google Scholar 

  144. Park J-H, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23:1008–19.

    Article  PubMed  CAS  Google Scholar 

  145. Li J, Zeng M, Shan H, Tong C. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24:2413–22.

    Article  PubMed  CAS  Google Scholar 

  146. Kawamura R, Shimizu K, Matsumoto Y, Yamagishi A, Silberberg YR, Iijima M, Kuroda S, Fukazawa K, Ishihara K, Nakamura C. High efficiency penetration of antibody-immobilized nanoneedle thorough plasma membrane for in situ detection of cytoskeletal proteins in living cells. J Nanobiotechnology. 2016;14:1–9.

    Article  Google Scholar 

  147. Carrera-Crespo JE, Huerta-Flores AM, Torres-Martinez LM, Juarez-Ramirez I. Effect of the Cu foam pretreatment in the growth and inhibition of copper oxide nanoneedles obtained by thermal oxidation and their evaluation as photocathodes. Mater Sci Semicond Process. 2019;102: 104604.

    Article  CAS  Google Scholar 

  148. Silberberg YR, Mieda S, Amemiya Y, Sato T, Kihara T, Nakamura N, Fukazawa K, Ishihara K, Miyake J, Nakamura C. Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosens Bioelectron. 2013;40:3–9.

    Article  PubMed  CAS  Google Scholar 

  149. Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev. 2021;50(15):8669–742.

    Article  PubMed  CAS  Google Scholar 

  150. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev. 2019;119(16):9559–656.

    Article  PubMed  CAS  Google Scholar 

  151. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. Iscience. 2021;24(1): 102012.

    Article  PubMed  CAS  Google Scholar 

  152. Manikkath J, Subramony JA. Toward closed-loop drug delivery: integrating wearable technologies with transdermal drug delivery systems. Adv Drug Deliv Rev. 2021;179: 113997.

    Article  PubMed  CAS  Google Scholar 

  153. Wang C. Nanoneedle chips and the production thereof. United States patent US20040063100A1. 2004

  154. Chih WC, Connie CH, Forrest GS, Wai SK. Nanoneedle plasmonic photodetectors and solar cells. United States patent US 8809672 B2. 2014

  155. Byong CP, Ki YJ, Won YS, Jae WH, Beom H, Sang JA. Method for fabricating SPM and CD-SPM nanoneedle probe using ion beam and SPM and CD-SPM nanoneedle probe thereby. United States patent US 7703147 B2. 2010

  156. Elad P, Uri S. Fabrication of hollow nanoneedles US20120171755A1. 2012

  157. Hesaam E. Nano-sensor array. United States patent US 8585973B2. 2013

  158. Ali J, Yu LC, Zhiyong F. Black GE based on crystalline/amorphous core/shell nanoneedle arrays. United States patent US 8664095B2. 2014

  159. Mekonos Inc ; The Board of Trustees of the Leland Stanford Junior University. Systems and methods for aptamer-based intracellular delivery of a payload using nanoneedles. United States patent US 20210301308A1. 2021

  160. Jürgen K, Mincho N, Jose EP. Nanoneedles for intracellular applications. United States patent US 20180355297A1. 2018

  161. Chonghu W, Qishan W, Xiao W, Gaoan L, Mandou X, Hongbo N, Guanjin G, Chaoying F, Lili M. Preparation method of industrial purple nano-needle tungsten oxide. United States patent US 20140014875A1. 2014

  162. Deli W. Nanoneedle and related apparatus and methods. United States patent US 20200115671A1. 2020

  163. Sang JA, Buong CP, Yung-ho K, Ho C, Kwang HG. Spm nanoprobes and the preparation method thereof. United States patent US 20110203021A1. 2011

  164. Hongkun P, Xing L, Jeffrey TA, Steven B, Tianyang Y. Micro- and nanoneedles for plant and other cell penetration. United States patent US 20200347393A1. 2020

  165. Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Control Release. 2019;311–312:170–89.

    Article  PubMed  Google Scholar 

  166. Alhmoud H, Brodoceanu D, Elnathan R, Kraus T, Voelcker NH. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Prog Mater Sci. 2021;116: 100636.

    Article  CAS  Google Scholar 

  167. Meng X, Zhang Z, Micro LL. Micro/nano needles for advanced drug delivery. Prog Nat Sci Mater Int. 2020;30(5):589–96.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Deanship of Scientific Research at King Khalid University, Saudi Arabia, through the Large Program (grant number RGP-2/264/44).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BV, and MR; methodology, SM, DVG, MAS, AA, and RAMO; software, SM, KSA, and SA; validation, MMA, SA, and AA; formal analysis, SM, DVG, and KC; investigation, MMA and SR; resources, SM, SR and MR; data curation, SR, RAMO, BV, and MMA; writing—original draft preparation, SM; writing—review and editing, BV, DVG, MR, and AA; visualization, SM, KSA; supervision, RAMO, MR, BV; project administration, BV, KSA, and MR; funding acquisition, MR. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Riyaz Ali M. Osmani or Balamuralidhara Veeranna.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahamathulla, M., Murugesan, S., Gowda, D.V. et al. The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications. AAPS PharmSciTech 24, 216 (2023). https://doi.org/10.1208/s12249-023-02661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02661-1

Keywords

Navigation