Skip to main content
Log in

Design, Development, and Evaluation of SA-F127:TPGS Polymeric Mixed Micelles for Improved Delivery of Glipizide Drug: In-vitro, Ex-vivo, and In-vivo Investigations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The anti-diabetic glipizide (GLN) drug has notable pharmaceutical advantages, but poor aqueous solubility restricts its wide applications. The present work was to develop a mixed polymeric micelle system composed of SA-F127 and TPGS to improve the water solubility and effective delivery of the GLN. First, we synthesized SA-F127 and confirmed it through FTIR, NMR, and GPC techniques. The GLN-PMM were fabricated with the thin-film technique and optimized with CCD design. The developed GLN-PMM was characterized using DLS, Zeta, TEM, Rheology, FTIR, DSC, and XRD measurements. The GLN-PMM manifested a spherical morphology with 67.86 nm particle size, a −3.85 mV zeta potential, and a 0.582±0.06 PDI value. The polymeric mixed micelles showed excellent compatibility with GLN and were amorphous in nature. NMR studies confirmed the encapsulation of GLN in the core of the mixed micelle. In addition, the GLN-PMM micelles were tested in vitro for cumulative drug release, ex vivo for permeation, and in vivo for anti-diabetic investigations. The GLN-PMM release profile in the various pH environments showed over 90% after 24 h, clearly indicating sustained release. The GLN-PMM micelles gave higher 88.86±3.39% GLN permeation from the goat intestine compared with free GLN. In-vivo anti-diabetic investigation proves the powerful anti-diabetic properties of GLN-PMM in comparison to the marketed formulation. These findings demonstrated that the polymeric mixed micelles of SA-F127 and TPGS could be a promising, effective, and environment-friendly approach for oral delivery of the GLN.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available on request.

References

  1. Grohganz H, Priemel PA, Löbmann K, Nielsen LH, Laitinen R, Mullertz A, et al. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv. 2014;11:977–89 (Taylor & Francis).

    Article  PubMed  Google Scholar 

  2. Noh K, Shin BS, Kwon K, Yun H, Kim E, Jeong TC, et al. Absolute bioavailability and metabolism of aceclofenac in rats. Arch Pharm Res. 2015;38:68–72 (Springer).

    Article  PubMed  Google Scholar 

  3. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48 (Nature Publishing Group).

    Article  PubMed  Google Scholar 

  4. Morakul B, Suksiriworapong J, Chomnawang MT, Langguth P, Junyaprasert VB. Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation–lyophilization–homogenization method. Eur J Pharm Biopharm. 2014;88:886–96 (Elsevier).

    Article  PubMed  Google Scholar 

  5. Kumar S, Jog R, Shen J, Zolnik B, Sadrieh N, Burgess DJ. In vitro and in vivo performance of different sized spray-dried crystalline itraconazole. J Pharm Sci. 2015;104:3018–28 (Wiley Online Library).

    Article  PubMed  Google Scholar 

  6. Li H, Dong L, Liu Y, Wang G, Wang G, Qiao Y. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats. Int J Pharm. 2014;466:133–8 (Elsevier).

    Article  PubMed  Google Scholar 

  7. Zhang X, Wu Y, Hong Y, Zhu X, Lin L, Lin Q. Preparation and evaluation of dl-praeruptorin A microemulsion based hydrogel for dermal delivery. Drug Deliv. 2015;22:757–64 (Taylor & Francis).

    Article  PubMed  Google Scholar 

  8. Fatfat Z, Fatfat M, Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment. World J Gastroenterol. 2022;28:2867 (Baishideng Publishing Group).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10:2055 (MDPI).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36 (Elsevier).

    Article  PubMed  Google Scholar 

  11. Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, et al. Formulation, solubilization, and in vitro characterization of quercetin-incorporated mixed micelles of PEO-PPO-PEO block copolymers. Appl Biochem Biotechnol. 2022;194:445–63 (Springer).

  12. Jarak I, Varela CL, da Silva ET, Roleira FFM, Veiga F, Figueiras A. Pluronic-based nanovehicles: recent advances in anticancer therapeutic applications. Eur J Med Chem. 2020;206:112526 (Elsevier).

    Article  PubMed  Google Scholar 

  13. Khimani M, Patel H, Patel V, Parekh P, Vekariya RL. Self-assembly of stimuli-responsive block copolymers in aqueous solutions: an overview. Polym Bull. 2020;77:5783–810 (Springer).

    Article  Google Scholar 

  14. Patra A, Shenoy AK, Bush JA, Kazi M, Hussain MD, Satpathy S, et al. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomedicine. 2018;13:2869 (Dove Press).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu H, Petrosyan A, Osna NA, Liu T, Olou AA, Alakhova DY, et al. Pluronic block copolymers enhance the anti-myeloma activity of proteasome inhibitors. J Control Release. 2019;306:149–64 (Elsevier).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma RK, Shaikh S, Ray D, Aswal VK. Binary mixed micellar systems of PEO-PPO-PEO block copolymers for lamotrigine solubilization: a comparative study with hydrophobic and hydrophilic copolymer. J Polym Res. 2018;25:1–11 (Springer).

    Article  Google Scholar 

  17. Barthel MJ, Schacher FH, Schubert US. Poly (ethylene oxide)(PEO)-based ABC triblock terpolymers–synthetic complexity vs. application benefits. Polym Chem. 2014;5:2647–62 (Royal Society of Chemistry).

    Article  Google Scholar 

  18. Shaikh SJ, Patel HS, Ray D, Aswal VK, Singh S, Vijayvargia R, Sheth U, Sharma RK. Enhanced solubility and oral bioavailability of hydrophobic drugs using pluronic nanomicelles: an in-vitro evaluation. ChemistrySelect. 2021;28:7040–8 (Wiley Online Library).

    Article  Google Scholar 

  19. Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini M. triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: a focus on pluronic F127. Tissue Eng Part B Rev. 2022;28:451–63 (Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New).

    Article  PubMed  Google Scholar 

  20. Akash MSH, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev. 2014;54:573–97 (Taylor & Francis).

    Article  Google Scholar 

  21. Shriky B, Kelly A, Isreb M, Babenko M, Mahmoudi N, Rogers S, et al. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J Colloid Interface Sci. 2020;565:119–30 (Elsevier).

    Article  PubMed  Google Scholar 

  22. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15:571–84 (ACS Publications).

    Article  PubMed  Google Scholar 

  23. Cagel M, Bernabeu E, Gonzalez L, Lagomarsino E, Zubillaga M, Moretton MA, et al. Biomedicine & Pharmacotherapy Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil ®. Biomed Pharmacother. 2017;95:894–903 (Elsevier).

    Article  PubMed  Google Scholar 

  24. Meng X, Liu J, Yu X, Li J, Lu X, Shen T. Pluronic F127 and D-α-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep. 2017;7:1–12 (Nature Publishing Group).

    Article  Google Scholar 

  25. Shen C, Zhu J, Song J, Wang J, Shen B, Yuan H, et al. Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid. Drug Dev Ind Pharm. 2020;46:1100–7 (Taylor & Francis).

    Article  PubMed  Google Scholar 

  26. Rathod S, Bahadur P, Tiwari S. Nanocarriers based on vitamin E-TPGS: design principle and molecular insights into improving the efficacy of anticancer drugs. Int J Pharm. 2021;592:120045 (Elsevier).

    Article  PubMed  Google Scholar 

  27. Luiz MT, Di Filippo LD, Alves RC, Araújo VHS, Duarte JL, Marchetti JM, et al. The use of TPGS in drug delivery systems to overcome biological barriers. Eur Polym J. 2021;142:110129 (Elsevier).

    Article  Google Scholar 

  28. Yan H, Du X, Wang R, Zhai G. Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces. 2021;205:111914 (Elsevier).

    Article  PubMed  Google Scholar 

  29. Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In vitro characterization of pluronic F127 and D--tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater. 2012;2012. (Hindawi).

  30. Sharma PK, Bhatia SR. Effect of anti-inflammatories on Pluronic® F127: micellar assembly, gelation and partitioning. Int J Pharm. 2004;278:361–77 (Elsevier).

    Article  PubMed  Google Scholar 

  31. Zhang Y, Lam YM. Controlled synthesis and association behavior of graft Pluronic in aqueous solutions. J Colloid Interface Sci. 2007;306:398–404 (Elsevier).

    Article  PubMed  Google Scholar 

  32. Tiwari S, Kansara V, Bahadur P. Targeting anticancer drugs with pluronic aggregates: recent updates. Int J Pharm. 2020;586:119544 (Elsevier).

    Article  PubMed  Google Scholar 

  33. Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: a critical review. Adv Colloid Interface Sci. 2022;299:102563 (Elsevier).

    Article  PubMed  Google Scholar 

  34. Bruni G, Ghione I, Berbenni V, Cardini A, Capsoni D, Girella A, et al. The physico-chemical properties of glipizide: new findings. Molecules. 2021;26:3142 (MDPI).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Joya-Galeana J, Fernandez M, Cervera A, Reyna S, Ghosh S, Triplitt C, et al. Effects of insulin and oral anti-diabetic agents on glucose metabolism, vascular dysfunction and skeletal muscle inflammation in type 2 diabetic subjects. Diabetes Metab Res Rev. 2011;27:373–82 (Wiley Online Library).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J Pharm Biomed Anal. 2005;38:633–44 (Elsevier).

    Article  PubMed  Google Scholar 

  37. Groop L, Defronzo R, Luzi L, Melander A. Hyperglycaemia and absorption of sulphonylurea drugs. Lancet. 1989;334:129–30 (Elsevier).

    Article  Google Scholar 

  38. Aly AM, Qato MK, Ahmad MO. Enhancement of the dissolution rate and bioavailability of glipizide through cyclodextrin inclusion complex. Pharm Technol. 2003;27:54 (Advanstar Communications Inc.).

    Google Scholar 

  39. Kushare SS, Gattani SG. Microwave-generated bionanocomposites for solubility and dissolution enhancement of poorly water-soluble drug glipizide: in-vitro and in-vivo studies. J Pharm Pharmacol. 2013;65:79–93 (Oxford University Press).

    Article  PubMed  Google Scholar 

  40. Gao Q, Liang Q, Yu F, Xu J, Zhao Q, Sun B. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system. Colloids Surf B Biointerfaces. 2011;88:741–8 (Elsevier).

    Article  PubMed  Google Scholar 

  41. Patel B, Singh S, Parikh K, Chavda V, Ray D, Aswal VK, et al. Micro-Environment mapping of mole fraction inspired contrasting charged aqueous Gemini micelles: a drug solubilization/release study. J Mol Liq. 2022;363:119885 (Elsevier).

    Article  Google Scholar 

  42. Patel B, Singh S, Parikh K, Chavda V, Hirpara D, Ray D, et al. Composition triggered aggregation/solubilization behaviour of mixed counter charged gemini surfactants: a multi-technique investigations. J Mol Liq. 2022;359:119242 (Elsevier).

    Article  Google Scholar 

  43. Dash RN, Mohammed H, Humaira T, Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J. 2015;23:528–40 (Elsevier).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kulthe SS, Inamdar NN, Choudhari YM, Shirolikar SM, Borde LC, Mourya VK. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces. 2011;88:691–6 (Elsevier).

    Article  PubMed  Google Scholar 

  45. Rupp C, Steckel H, Müller BW. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int J Pharm. 2010;395:272–80 (Elsevier).

    Article  PubMed  Google Scholar 

  46. Zeisig R, Shimada K, Hirota S, Arndt D. Effect of sterical stabilization on macrophage uptake in vitro and on thickness of the fixed aqueous layer of liposomes made from alkylphosphocholines. Biochim Biophys Acta (BBA)-Biomembranes. 1996;1285:237–45. (Elsevier).

  47. Mu C-F, Balakrishnan P, Cui F-D, Yin Y-M, Lee Y-B, Choi H-G, et al. The effects of mixed MPEG–PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials. 2010;31:2371–9 (Elsevier).

    Article  PubMed  Google Scholar 

  48. Kulhari H, Pooja D, Shrivastava S, Telukutala SR, Barui AK, Patra CR, et al. Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomed Nanotechnol Biol Med. 2015;11:1511–20. (Elsevier).

  49. Zhao L, Du J, Duan Y, Zang Y, Zhang H, Yang C, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces. 2012;97:101–8 (Elsevier B.V.).

    Article  PubMed  Google Scholar 

  50. Ji S, Lin X, Yu E, Dian C, Yan X, Li L, et al. Curcumin-loaded mixed micelles : preparation, characterization, and in vitro antitumor activity. 2018;2018:1–9 (Hindawi).

  51. Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, et al. Structural transitions in mixed phosphatidylcholine/pluronic micellar systems and their in vitro therapeutic evaluation for poorly water-soluble drug. J Mol Liq. 2022;364:120003 (Elsevier).

    Article  Google Scholar 

  52. Singla P, Chabba S, Mahajan RK. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf A Physicochem Eng Asp. 2016;504:479–88 (Elsevier).

    Article  Google Scholar 

  53. Zhao C, Jin C, Gao H, Wang L, Liu H, He Z. Effect of raw material variability of glipizide on the in vitro dissolution rate and in vivo bioavailability performance: the importance of particle size. Asian J Pharm Sci. 2019;14:165–73 (Elsevier).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Fluorescence measurements were carried out on the instrument purchased under the DST-PURSE program (SR/PURSE Phase 2/28 (C)). XRD measurements were acquired on the instrument purchased under the DST-FIST Program of the Applied Physics Department (SR/FST/PS-II/2017/20). This work was financially supported by the SHODH-Scheme of Developing High-quality Research, Education Department, Gujarat, India. The corresponding author also acknowledged the CoE of Polymers, Applied Chemistry Department, Faculty of Technology and Engineering, for necessary lab facilities.

Author information

Authors and Affiliations

Authors

Contributions

Hemil S Patel: investigation; methodology; data analysis; writing – original draft; software; artwork.

Rakesh K Sharma: conceptualization; supervision; project administration; writing – original draft; review and editing.

Subhash Tripathi: methodology, artwork.

Bhavin A. Vyas: carried out in-vivo anti-diabetic study.

Corresponding author

Correspondence to Rakesh K. Sharma.

Ethics declarations

Ethics Approval

The Animal study protocol was approved by The Institutional Animal Ethics Committee (Maliba Pharmacy College, Uka Tarsadiya University, Bardoli Gujarat, India) No. MPC/IAEC/19/2021).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3098 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H.S., Vyas, B.A., Tripathi, S. et al. Design, Development, and Evaluation of SA-F127:TPGS Polymeric Mixed Micelles for Improved Delivery of Glipizide Drug: In-vitro, Ex-vivo, and In-vivo Investigations. AAPS PharmSciTech 24, 213 (2023). https://doi.org/10.1208/s12249-023-02659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02659-9

Keywords

Navigation