Skip to main content

Advertisement

Log in

Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 14 November 2023

This article has been updated

Abstract

Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Firenzuoli F, Gori L. Herbal medicine today: clinical and research issues. Evid Based Complement Alternat Med. 2007;4(SUPPL. 1):37–40. https://doi.org/10.1093/ecam/nem096.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: past history and future perspective. J HerbMed Pharmacol. 2018;7(1): 1–7. https://doi.org/10.15171/jhp.2018.01.

  3. Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines. 2015;2(3):251–86. https://doi.org/10.3390/medicines2030251.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem. 2017;142:213–28. https://doi.org/10.1016/j.ejmech.2017.07.034.

    Article  PubMed  Google Scholar 

  5. Kuhlmann MP. Estratégias de dispersão de sementes no bioma Cerrado: Considerações Ecológicas e Filogenéticas. 2016;353. https://doi.org/10.26512/2016.03.T.20630.

  6. Rocha CQ, Vilela FC, Cavalcante GP, Santa-Cecília FV, Santos-E-Silva L, Dos Santos MH, et al. Anti-inflammatory and antinociceptive effects of Arrabidaea brachypoda (DC) Bureau roots. J Ethnopharmac. 2011;133(2):396–401. https://doi.org/10.1016/j.jep.2010.10.009.

    Article  Google Scholar 

  7. Rocha CQ, Queiroz EF, Meira CS, Moreira DRM, Soares MBP, Marcourt L, et al. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-rypanosoma cruzi activity. J Nat Prod. 2014;77(6):1345–50. https://doi.org/10.1021/np401060j.

    Article  PubMed  Google Scholar 

  8. Rocha CQ, De-Faria FM, Marcourt L, Ebrahimi SN, Kitano BT, Ghilardi AF, et al. Gastroprotective effects of hydroethanolic root extract of Arrabidaea brachypoda: evidences of cytoprotection and isolation of unusual glycosylated polyphenols. Phytochemistry. 2017;135:93–105. https://doi.org/10.1016/j.phytochem.2016.12.002.

    Article  PubMed  Google Scholar 

  9. Rocha VPC, Rocha CR, Queiroz EF, Marcourt L, Vilegas W, Grimaldi G, Furrer P, Allémann E, Wolfender J-L, Soares M. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules. 2019;24(1):1–13. https://doi.org/10.3390/molecules24010001.

    Article  Google Scholar 

  10. Nunes HL, Tuttis K, Serpeloni JM, Nascimento JRD, da Rocha CQ, Silva VAO, Lengert AVH, Reis RM, de SyllosCólus IM. Characterization of the invitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. J Toxicol Environ Health A. 2020;83(15–16):547–58. https://doi.org/10.1080/15287394.2020.1784339.

    Article  PubMed  Google Scholar 

  11. Serpeloni JM, Ribeiro DL, Weiss GF, De Oliveira LCB, Fujiike AY, Nunes HL, Da Rocha CQ, Guembarovski RL, Cólus IMS. Flavonoid brachydin B decreases viability, proliferation, and migration in human metastatic prostate (DU145) cells grown in 2D and 3D culture models. Toxicology Research. 2023;12:321–31. https://doi.org/10.1093/toxres/tfad019.

    Article  PubMed  Google Scholar 

  12. Oliveira LCB, Ribeiro DL, Nascimento JR, Rocha CQ, Cólus IMS, Serpeloni JM. Anticancer activities of Brachydin C in human prostate tumor cells (DU145) grown in 2D and 3D models: stimulation of cell death and downregulation of metalloproteinases in spheroids. Chem Biol Drug Des. 2022;100:747–62. https://doi.org/10.1111/cbdd.14112.

    Article  PubMed  Google Scholar 

  13. Ribeiro DL, Tuttis K, Oliveira LCB, Serpeloni JM, Gomes INF, Lengert AVH, Rocha CQ, Reis RM, Cólus IMS, Antunes LMG. The Antitumoral/antimetastatic action of the flavonoid brachydin A in metastatic prostate tumor spheroids in vitro is mediated by (Parthanatos) PARP-related cell death. Pharmaceutics. 2022;14:963. https://doi.org/10.3390/pharmaceutics14050963.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Oliveira LCB, Nunes HL, Ribeiro DL, Do Nascimento JR, Da Rocha CQ, De Syllos Cólus IM, Serpeloni JM. Aglycone flavonoid brachydin A shows selective cytotoxicity and antitumoral activity in human metastatic prostate (DU145) cancer cells. Cytotechnology, 2021;1:1. https://doi.org/10.1007/s10616-021-00495-y.

  15. Oliveira LC, Fujiike AY, Ribeiro DL, Da Rocha CQ, Cólus IMDS, Serpeloni JM. Cytotoxic and antiproliferative effects of -brachydin C’ in DU-145 cells grown in 3D multicellular tumor spheroids. Toxicol Lett. 2021;350:S109. https://doi.org/10.1016/S0378-4274(21)00503-8.

    Article  Google Scholar 

  16. Nunes HL, Tuttis K, Serpeloni JM, Nascimento JR, Da Rocha CQ, Silva VAO, Lengert AVH, Reis RM, De Syllos Cólus IM. Characterization of the in vitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. J Toxicol Environ Health - A: Curr. Issues, 2020;1:1-12. https://doi.org/10.1080/15287394.2020.1784339.

  17. Salgado C, Morin H, Aquino NC, Neff L, Rocha CQ, Vilegas W, Marcourt L, Wolfender J, Jordan O, Queiroz EF. Allemann E. In Vitro Anti-Inflammatory Activity in Arthritic Synoviocytes of A. brachypoda root extracts and its unusual dimeric flavonoids. Molecules. 2020;25:5219. https://doi.org/10.3390/molecules25215219.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andrade LMA, De Oliveira ABM, Leal ALAB, Oliveira FAA, Portela AL, Neto JSL, De Siqueira-Júnior JP, Kaatz GW, Da Rocha CQ, Barreto HM. Antimicrobial activity and inhibition of the NorA efflux pump of Staphylococcus aureus by extract and isolated compounds from Arrabidaea brachypoda. Micro Pathog. 2020;140:103935. https://doi.org/10.1016/j.micpath.2019.103935.

    Article  Google Scholar 

  19. Serpeloni JM, Specian AFL, Ribeiro DL, Benício LM, Nunes HL, Franchi LP, Rocha CQ, Vilegas W, Varanda EA, Cólus IMS. Fridericia platyphylla (Cham.) L.G. Lohmann root extract exerts cytotoxic and antiproliferative effects on gastric tumor cells and downregulates BCL-XL, BIRC5, and MET genes. Human Exper Toxicol. 2020;39:338–54. https://doi.org/10.1177/0960327119888261.

    Article  Google Scholar 

  20. Lipinski C. Poor aqueous solubility — an industry wide problem in drug discovery. Am Pharm Rev. 2002;5:82–5.

    Google Scholar 

  21. Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, et al. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm. 2015;478(1):341–7. https://doi.org/10.1016/j.ijpharm.2014.11.060.

    Article  PubMed  Google Scholar 

  22. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target. 2013;21(10):904–13. https://doi.org/10.3109/1061186X.2013.837469.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Ira J Pharm Res. 2010;9(4):327–34.

    Google Scholar 

  24. Figueiredo KA, Neves JKO, Silva JA, Freitas RMD, Carvalho ALM. Phenobarbital loaded microemulsion: development, kinetic release and quality control. Braz J Pharm Sci. 2016;52(2):251–64. https://doi.org/10.1590/S1984-82502016000200003.

    Article  Google Scholar 

  25. Dong X, Zhu Q, Dai Y, He J, Pan H, Chen J, et al. Encapsulation artocarpanone and ascorbic acid in O/W microemulsions: preparation, characterization, and antibrowning effects in apple juice. Food Chem. 2016;192:1033–40. https://doi.org/10.1016/j.foodchem.2015.07.124.

    Article  PubMed  Google Scholar 

  26. Baby AR, Haroutiounian-Filho CA, Sarruf FD, Tavante-Júnior CR, Pinto CASO, Zague V. Stability and in vitro skin penetration study of rutin in a cosmetic emulsion using an alternative biomembrane model. Rev Bras Ciên Farm. 2008;44(2):233–48. https://doi.org/10.1590/S1516-93322008000200009.

    Article  Google Scholar 

  27. Simon A, Amaro MI, Healy AM, Cabral LM, Sousa VP. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int J Pharm. 2016;512:234–41. https://doi.org/10.1016/j.ijpharm.2016.08.052.

    Article  PubMed  Google Scholar 

  28. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Silva JA, Santana DP, Bedor DGC, Borba VFC, Lira AAM, Egito EST. In vitro release and permeation of a diclofenac diethylamine from microemulsion gel-like. Quim Nova. 2009;32(6):1389–93. https://doi.org/10.1590/S0100-40422009000600005.

    Article  Google Scholar 

  30. Dalmora MEA, Dalmora SL, Oliveira AG. Inclusion complex of piroxicam with b-cyclodextrin and incorporation in cationic microemulsion In vitro drug release and in vivo topical anti-inflammatory effect. Int J Pharm. 2001;222:45–55. https://doi.org/10.1016/s0378-5173(01)00692-5.

    Article  PubMed  Google Scholar 

  31. Formariz TP, Urban MCC, Silva-Júnior AA, Gremião MD, Oliveira AG. Microemulsion and liquid cristals as drug delivery systems. Rev Bras Ciên Farmac. 2005;41(3):301–13. https://doi.org/10.1590/S1516-93322005000300003.

    Article  Google Scholar 

  32. Schramm G. Rheology and rheometry: theoretical and practical fundamentals, 1st ed. São Paulo:Artliber; 2006.

  33. Morey AT, De Souza FC, Santos JP, Pereira CA, Cardoso JD, De Almeida RS, et al. Antifungal activity of condensed tannins from Stryphnodendron adstringens: effect on Candida tropicalis growth and adhesion properties. Curr Pharm Biotechnol. 2016;17(4):365–37. https://doi.org/10.2174/1389201017666151223123712.

    Article  PubMed  Google Scholar 

  34. Valk TVD, Meijden AVD. Toxicity of scorpion venom in chick embryo and mealworm assay depending on the use of the soluble fraction versus the whole venom. Toxicon. 2014;88:38–43. https://doi.org/10.1016/j.toxicon.2014.06.007.

    Article  PubMed  Google Scholar 

  35. Wang X, Hao Q, Chen Y, Jiang S, Yang Q, Li Q. The effect of chemical composition and bioactivity of several essential oils on Tenebrio molitor (Coleoptera: Tenebrionidae). J Insect Sci. 2015;15(1):116. https://doi.org/10.1093/jisesa/iev093.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1):148–155. https://doi.org/10.1016/j.ijpharm.2008.12.009.

  37. Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion microstructure(s): a tutorial review. Nanomaterials. 2020;10(9):1657. https://doi.org/10.3390/nano10091657.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patel RB, Patel MR, Bhatt KK, Patel BG. Formulation consideration and characterization of microemulsion drug delivery system for transnasal administration of carbamazepine. Bull Faculty Pharm Cairo Univ. 2013;51:243–53. https://doi.org/10.1016/j.bfopcu.2013.07.002.

    Article  Google Scholar 

  39. Moghimipour E, Salimi A, Eftekhari S. Design and characterization of microemulsion systems for naproxen. Adv Pharm Bull. 2013;3(1):63–71. https://doi.org/10.5681/apb.2013.011.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nemichand SK, Laxman SD. Solubility Enhancement of nebivolol by micro emulsion technique. J Young Pharm. 2016;8(4):356–67. https://doi.org/10.5530/jyp.2016.4.11.

    Article  Google Scholar 

  41. Brazil. National Health Surveillance Agency. In: Cosmetic Product Stability Guide. first ed. Brasília: ANVISA. 2004. https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/cosmeticos/manuais-e-guias/guia-de-estabilidade-de-cosmeticos.pdf/view. accessed 29 June 2023.

  42. Auton, ME. Delineamento de Formas Farmacêuticas, 2nd ed. Porto Alegre: Artmed: 2005.

  43. Fronza T, Campos A, Teixeira H. Nanoemulsões como sistemas de liberação de Fármacos Oftálmicos. Acta Farmacêutica Bonaerense. 2004;23(4):558–66.

    Google Scholar 

  44. Santana RC, Fasolin LH, Cunha RL. Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloids Surf Physicochem Eng Aspects. 2012;398:54–63. https://doi.org/10.1016/j.colsurfa.2012.02.009.

    Article  Google Scholar 

  45. Gonsenca M, Bešter-Rogac M, Gašperlin M. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate. Eur J Pharma Sci. 2013;50(1):114–22. https://doi.org/10.1016/j.ejps.2013.04.029.

    Article  Google Scholar 

  46. Ferreira SG, Conceição VS, Gouveia NS, Santos GS, Santos RLC, Lira AAM. et al. An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil. J Colloid Interface Sci. 2015;456:190-196. https://doi.org/10.1016/j.jcis.2015.06.012.

  47. Cruz SA, Farah M, Zanin M, Bretas RES. Evaluation of rheological properties of virgin HDPE/recycled HDPE blends. Polímeros. 2008;18(2):144–51. https://doi.org/10.1590/S0104-14282008000200012.

    Article  Google Scholar 

  48. Campanholi KDS, Braga G, Da Silva JB, Da Rocha NL, De Francisco LMB, De Oliveira ÉL, et al. Biomedical platform development of a chlorophyll-based extract for topic photodynamic therapy: mechanical and spectroscopic properties. Langmuir. 2018;34:8230–824. https://doi.org/10.1021/acs.langmuir.8b00658.

    Article  PubMed  Google Scholar 

  49. Da Silva JB, Cook MT, Bruschi ML. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydr Polym. 2020;240:116268. https://doi.org/10.1016/j.carbpol.2020.116268.

    Article  PubMed  Google Scholar 

  50. Da Silva-Junior RC, Campanholi KDS, De Morais FAP, Pozza MSDS, De Castro-Hoshino LV, Baesso ML, et al. Photothermal stimuli-responsive hydrogel containing safranine for mastitis treatment in veterinary using phototherapy. ACS Appl Bio Mater. 2022;4:581–96.

    Article  Google Scholar 

  51. Correa MA, Scarpa MV, Franzini MC, Oliveira AG. On the incorporation of the nonsteroidal anti-inflammatory naproxen into cationic O/W microemulsions. Colloids Surf B. 2005;43(2):106–12. https://doi.org/10.1016/j.colsurfb.2005.04.005.

    Article  Google Scholar 

  52. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;108(109):303–18. https://doi.org/10.1016/j.cis.2003.10.023.

    Article  Google Scholar 

  53. Dalmora MEA, Dalmora SL, Oliveira AG. Inclusion complex of piroxicam with b-cyclodextrin and incorporation in cationic microemulsion In vitro drug release and in vivo topical anti-inflammatory effect. Int J Pharm. 2001;222:45–55. https://doi.org/10.1016/s0378-5173(01)00692-5.

    Article  PubMed  Google Scholar 

  54. Alireza MS, Pishrochi S, Jafari AZ. Formulation and in vitro evaluation of tretinoin microemulsion as a potential carrier for dermal drug delivery. Ira J Pharm Res. 2013;12(4):599–609.

    Google Scholar 

  55. Cojocaru V, Ranetti AE, Hinescu LG, Ionescu M, Cosmescu C, Poștoarcă AG. Formulation and evaluation of in vitro release kinetics of Na 3 Cadtpa decorporation agent embedded in microemulsion-based gel formulation for topical delivery. Farmacia 2015;63(5):656–664. https://farmaciajournal.com/wp-content/uploads/2015-05-art-06-Cojocaru_Victor_656-664.

  56. Shaikh HK, Kshirsagar RV, Patil SG. Mathematical models for drug release characterization: a review. World J Pharm Pharmaceut Sci. 2015;4(4):324–38.

    Google Scholar 

  57. Shaikh HK, Kshirsagar RV, Patil SG. Mathematical models for drug release characterization: a review. World J Pharm Pharmaceut Sci. 2015;4(4):324–38.

    Google Scholar 

  58. Ejeh SA, Abalaka SE, Usende IL, Alimi YA, Oyelowo FO. Acute toxicity, oxidative stress response and clinicopathological changes in Wistar rats exposed to aqueous extract of Uvaria chamae leaves. Scientific African. 2019;3:e00068. https://doi.org/10.1016/j.sciaf.2019.e00068.

    Article  Google Scholar 

  59. Moreira D de L, Teixeira SS, Monteiro MHD, De-Oliveira ACAX, Paumgartten FJR. Traditional use and safety of herbal medicines. Rev Bras Farmacogn. 2014;24(2):248–57. https://doi.org/10.1016/j.bjp.2014.03.006

  60. Farooq U, Khan A, Naz S, Rauf A, Khan H, Khan A, Ullah I, Bukhari SM. Sedative and antinociceptive activities of two new sesquiterpenes isolated from Ricinus communis. Chin J Nat Med. 2018;16(3):225–30. https://doi.org/10.1016/S1875-5364(18)30051-7.

    Article  PubMed  Google Scholar 

  61. Debnath BK, Saha UK, Sahoo N. A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renew Sustain Energy Rev. 2014;42:196–211. https://doi.org/10.1016/j.rser.2014.10.023.

    Article  Google Scholar 

  62. Zhao JH, Ji L, Wang H, Chen ZQ, Zhang YT, Liu Y, Feng NP. Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo. Int J Nanomed. 2011;6:1611–9. https://doi.org/10.2147/IJN.S23597.

    Article  Google Scholar 

  63. Zhang YT, Zhao JH, Zhang SJ, Zhong YZ, Wang Z, Liu Y, Shi F, Feng NP. Enhanced transdermal delivery of evodiamine and rutaecarpine using microemulsion. Int J Nanomed. 2011;6:2469–82. https://doi.org/10.2147/IJN.S25258.

    Article  Google Scholar 

  64. Zhang J, Michniak-Kohn B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen lidocaine, and caffeine. Int J Pharm. 2011;421:34–44. https://doi.org/10.1016/j.ijpharm.2011.09.014.

    Article  PubMed  Google Scholar 

  65. Sintov AC, Greenberg I. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. Int J Pharm. 2014. https://doi.org/10.1016/j.ijpharm.2014.05.040.

    Article  PubMed  Google Scholar 

  66. Silva JA, Santana DP, Bedor DGC, Borba VFC, Lira AMM, Egito EST. Estudo de liberação e permeação in vitro do diclofenaco de dietilamônio em microemulsão gel-like. Quim Nova. 2009;32:1389–93. https://doi.org/10.1590/S0100-40422009000600005.

    Article  Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by the National Council for Scientific and Technological Development (CNPq) [(Grant nº: 311090/2021-4 and 403668/2022-0, C.Q.R)], Coordination for the Improvement of Higher Education Personnel (CAPES)-finance code 001. J.R.N was the recipient of a fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Contributions

JRN: methodology, validation, investigation, formal analysis, writing original draft; BS, MR, GLNL, GMF, GCSN, RSG: methodology, validation, investigation; ALM and WV: methodology, validation, conceptualization, investigation, and writing review; CQR: methodology, validation, conceptualization, investigation, resources, writing original draft, writing review and editing, project administration, funding acquisition, formal analysis.

Corresponding author

Correspondence to Cláudia Quintino da Rocha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been corrected. The author names Matheus Rodrigues has been updated to Matheus Oliveira do Nascimento, and Beatriz Santiago has been updated Beatriz Santiago de Matos Monteiro Lira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, J.R., de Matos Monteiro Lira, B.S., do Nascimento, M.O. et al. Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots. AAPS PharmSciTech 24, 212 (2023). https://doi.org/10.1208/s12249-023-02655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02655-z

Keywords

Navigation