Skip to main content

Advertisement

Log in

A (Traditional Chinese Medicine) TCM-Inspired Doxorubicin Resistance Reversing Strategy: Preparation, Characterization, and Application of a Co-loaded pH-Sensitive Liposome

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, nano-strategy for combined medication of active compounds from traditional Chinese medicine herbs was proposed to achieve the synergistic effects of inhibiting the doxorubicin (DOX) resistance, reducing the cardio-toxicity, and improving the treatment efficacy simultaneously. Dihydroartemisinin (DHA) and tetrandrine (TET) were co-delivered for the first time to treat DOX resistance of breast cancer with multi-pathway mechanism. Tumor micro-environment sensitivity prescription was adopted to enhance the reversal effect of DOX resistance nearly 50 times (resistance index, RI was 46.70) and uptake ability. The DHA-TET pH-sensitive liposomes (DHA-TET pH-sensitive LPs) had a good spherical structure and a uniform dispersion structure with particle size, polydispersity index (PDI), and zeta potential of 112.20 ± 4.80 nm, 0.20 ± 0.02, and − 8.63 ± 0.74 Mv, and was stable until 14 days under the storage environment of 4°C and for 6 months at room temperature environment. With the DOX resistance reversing ability increased, the inhibition effect of DHA-TET pH-sensitive LPs on both MCF-7/ADR cells and MCF-7 cells was significantly enhanced; meanwhile, the toxicity on cardiac cell (H9c2) was lowered. Ferroptosis induced by the DHA was investigated showing that the intracellular reactive oxygen species (ROS) and lipid peroxidation were increased to promote the synergistic effect through the due-loaded nano-carrier, providing a promising alternative for future clinical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Han B, Yang Y, Chen J, et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int J Nanomed. 2020;15:553–71. https://doi.org/10.2147/ijn.s228715.

    Article  CAS  Google Scholar 

  2. Tao ZQ, Shi AM, Lu CT, et al. Breast cancer: epidemiology and etiology. Cell Biochem Biophys. 2015;72:333–8. https://doi.org/10.1007/s12013-014-0459-6.

    Article  CAS  PubMed  Google Scholar 

  3. Coughlin SS. Epidemiology of breast cancer in women [J]. Adv Exp Med Biol. 2019;1152:9–29. https://doi.org/10.1007/978-3-030-20301-6_2.

    Article  CAS  PubMed  Google Scholar 

  4. Winters S, Martin C, Murphy D, et al. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 2017;151:1–32. https://doi.org/10.1016/bs.pmbts.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  5. Nattinger AB, Mitchell JL. Breast cancer screening and prevention. Ann Intern Med. 2016;164:ITC81–96. https://doi.org/10.7326/aitc201606070.

    Article  PubMed  Google Scholar 

  6. Tao J, Diao L, Chen FC, et al. pH-Sensitive Nanoparticles codelivering docetaxel and dihydroartemisinin effectively treat breast cancer by enhancing reactive oxidative species-mediated mitochondrial apoptosis. Mol Pharm. 2021;18:74–86. https://doi.org/10.1021/acs.molpharmaceut.0c00432.

    Article  CAS  PubMed  Google Scholar 

  7. Bedard PL, Di Leo A, Piccart-Gebhart MJ. Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nat Rev Clin Oncol. 2010;7:22–36. https://doi.org/10.1038/nrclinonc.2009.186.

    Article  CAS  PubMed  Google Scholar 

  8. Fisusi Funmilola A, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7:3–23. https://doi.org/10.2174/2211738507666190122111224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Tian Y. The Yellow Emperor’s canon of internal medicine. Beijing: Beijing United Press; 2013.

    Google Scholar 

  10. Wang Y, Zhang Q, Chen Y, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 2020;121:109570. https://doi.org/10.1016/j.biopha.2019.109570.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Lou Y, Wang J, et al. Research status and molecular mechanism of the traditional chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front Immunol. 2021;11:609–705. https://doi.org/10.3389/fimmu.2020.609705.

    Article  CAS  Google Scholar 

  12. Guo FY, Yu N, Jiao YL, et al. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin co-delivery to combat multidrug-resistant breast cancer. Drug Deliv. 2021;28:1709–21. https://doi.org/10.1080/10717544.2021.1960926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li S, Li K, Zhang J, et al. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anticancer Agents Med Chem. 2013;13:352–5. https://doi.org/10.2174/1871520611313020020.

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y, Wang C, Meng Q, et al. Targeting P-glycoprotein and SORCIN: dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca2+-mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol. 2018;233:3066–79. https://doi.org/10.1002/jcp.26087.

    Article  CAS  PubMed  Google Scholar 

  15. Angeli JPF, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.

    Article  Google Scholar 

  16. Zhou Y, Shen Y, Chen C, et al. The crosstalk between autophagy and ferroptosis: what can we learn to target drug resistance in cancer? Cancer Biol Med. 2019;16:630–46. https://doi.org/10.20892/j.issn.2095-3941.2019.0158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun X, Yan PY, Zou C, et al. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev. 2019;39:2172–93. https://doi.org/10.1002/med.21580.

    Article  PubMed  Google Scholar 

  18. Wang J, Xu C, Yin KW, et al. Artemisinin, the magic drug discovered from traditional chinese medicine. Engineering. 2019;5:32–9.

    Article  CAS  Google Scholar 

  19. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. BBA-General Subjects. 2017;1861:1893–900. https://doi.org/10.1016/j.bbagen.2017.05.019.

    Article  CAS  PubMed  Google Scholar 

  20. Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50. https://doi.org/10.1038/nature24297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhagya N, Chandrashekar KR. Tetrandrine and cancer–an overview on the molecular approach. Biomed Pharmacother. 2018;97:624–32. https://doi.org/10.1016/j.biopha.2017.10.116.

    Article  CAS  Google Scholar 

  22. Wang H, Liu T, Li L, et al. Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species. Cell Biosci. 2015;5:4. https://doi.org/10.1186/2045-3701-5-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dawidczyk CM, Kim C, Park JH, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release. 2014;187:133–44. https://doi.org/10.1016/j.jconrel.2014.05.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei-Lun T, Wei-Hsin T, Andras S, et al. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials. 2018;166:13–26. https://doi.org/10.1016/j.biomaterials.2018.03.004.

    Article  CAS  Google Scholar 

  25. Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–53. https://doi.org/10.1016/j.ejmech.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  26. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed 10:975. https://doi.org/10.2147/ijn.s68861.

  27. Shinichi M, Naho K, Koichi N, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta. 2013;1828:412–8. https://doi.org/10.1016/j.bbamem.2012.10.017.

    Article  CAS  Google Scholar 

  28. Deodhar S, Dash AK. Long circulating liposomes: challenges and opportunities. Ther Deliv. 2018;9:857–72. https://doi.org/10.4155/tde-2018-0035.

    Article  CAS  PubMed  Google Scholar 

  29. Gao A, Liang H, Wang X, et al. Reversal effects of two new milbemycin compounds on multidrug resistance in MCF-7/adr cells in vitro. Eur J Pharmacol. 2011;659:108–13. https://doi.org/10.1016/j.ejphar.2011.03.023.

    Article  CAS  PubMed  Google Scholar 

  30. Sun L, Shao S, Li X, et al. Effects of doxorubicin on apoptosis of gastric cancer resistant cell line SGC7901/ADM Cells in silenced MDR1 gene. Genom Appl Biol. 2020;39:4803–7. https://doi.org/10.13417/j.gab.039.004803.

    Article  CAS  Google Scholar 

  31. Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328. https://doi.org/10.1016/j.redox.2019.101328.

    Article  CAS  PubMed  Google Scholar 

  32. Ai Z. The aerobic glycolysis-mediated drug resistance and dihydroartemisinin-induced ferroptosis in K562/ADM cells. Lanzhou University; 2018.

    Google Scholar 

  33. Zhong H, Zhao X, Zuo Z, et al. Combating P-glycoprotein-mediated multidrug resistance with 10-O-phenyl dihydroartemisinin ethers in MCF-7 cells. Eur J Med Chem. 2016;108:720–9. https://doi.org/10.1016/j.ejmech.2015.10.040.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Zhou X, Liu J, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci. 2020;248:117454. https://doi.org/10.1016/j.lfs.2020.117454.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant No. 82274236) and the Tianjin Research Innovation Project for Postgraduate Students (CN) (grant No. 2021YJSB284).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xueyan Zhang: software and writing-review and editing; Hua Liu: writing-original draft and data curation; Na Li: investigation and methodology; Jiayang Li: formal analysis and software; Meng Wang and Xiaoliang Ren: conceptualization, project administration, and supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Wang or Xiaoliang Ren.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, H., Li, N. et al. A (Traditional Chinese Medicine) TCM-Inspired Doxorubicin Resistance Reversing Strategy: Preparation, Characterization, and Application of a Co-loaded pH-Sensitive Liposome. AAPS PharmSciTech 24, 181 (2023). https://doi.org/10.1208/s12249-023-02630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02630-8

Keywords

Navigation