Skip to main content

Advertisement

Log in

3D-to-4D Structures: an Exploration in Biomedical Applications

  • Review Article
  • Novel Advances in 3-D Printing Technology in Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

3D printing is a cutting-edge technique for manufacturing pharmaceutical drugs (Spritam), polypills (guaifenesin), nanosuspension (folic acid), and hydrogels (ibuprofen) with limitations like the choice of materials, restricted size of manufacturing, and design errors at lower and higher dimensions. In contrast, 4D printing represents an advancement on 3D printing, incorporating active materials like shape memory polymers and liquid crystal elastomers enabling printed objects to change shape in response to stimuli. 4D printing offers numerous benefits, including greater printing capacity, higher manufacturing efficiency, improved quality, lower production costs, reduced carbon footprint, and the ability to produce a wider range of products with greater potential. Recent examples of 4D printing advancements in the clinical setting include the development of artificial intravesicular implants for bladder disorders, 4D-printed hearts for transplant, splints for tracheobronchomalacia, microneedles for tissue wound healing, hydrogel capsules for ulcers, and theragrippers for anticancer drug delivery. This review highlights the advantages of 4D printing over 3D printing, recent applications in manufacturing smart pharmaceutical drug delivery systems with localized action, lower incidence of drug administration, and better patient compliance. It is recommended to conduct substantial research to further investigate the development and applicability of 4D printing in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

3-Dimension

4D:

4-Dimension

4D-CT:

Four-dimensional computed tomography

4DRT:

4D radiation treatment

BME:

Biomedical engineering

CAD/CAM:

Computer-aided design/manufacturing

CBCT:

Cone-beam CT

CFF:

Caffeine

FDM:

Fusion deposition modeling

GelMA:

Methacrylated gelatin

GLY:

Glycerol

LAA:

Left atrial appendage

LCST:

Lower critical solution temperature

MN:

Microneedle

MNPs:

Magnetic nanoparticles

OMA:

Methacrylated alginate

PET:

Positron emission tomography

PLA:

Polylactide

PNIPAM:

Poly (N-isopropyl acrylamide)

PVA:

Poly (vinyl alcohol)

SL:

Stereolithography

SMH:

Shape memory hydrogel

SMX GRDDS:

Shape-memory expandable gastric retentive drug-delivery device

UV:

Ultraviolet

References

  1. Pravin S, Sudhir A. Integration of 3D printing with dosage forms: a new perspective for modern healthcare. Biomed Pharmacother. 2018;107(March):146–54.

    Article  CAS  PubMed  Google Scholar 

  2. Apparatus for production of three dimensional objects by stereolithography - patent US-6027324-A - PubChem [Internet].  Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A. Accessed 9 Dec 2022.

  3. The 3-D Printing Revolution [Internet].  Available from: https://hbr.org/2015/05/the-3-d-printing-revolution. Accessed 18 Apr 2023.

  4. The history of 3D printing: from the 80s to today [Internet].  Available from: https://www.sculpteo.com/en/3d-learning-hub/basics-of-3d-printing/the-history-of-3d-printing/. Accessed 18 Apr 2023.

  5. Zhou W, Qiao Z, Zare EN, Huang J, Zheng X, Sun X, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020 63(15):8003–8024. Available from: https://www.academia.edu/53904693/4D_Printed_Dynamic_Materials_in_Biomedical_Applications_Chemistry_Challenges_and_Their_Future_Perspectives_in_the_Clinical_Sector.

  6. Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech [Internet]. 2021 22(1). Available from: /pmc/articles/PMC7811988/. Accessed 21 Jan 2023.

  7. Lee Ventola C. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014 39(10):704. Available from: /pmc/articles/PMC4189697/.

  8. Sahafnejad-Mohammadi I, Karamimoghadam M, Zolfagharian A, Akrami M, Bodaghi M. 4D printing technology in medical engineering: a narrative review. J Brazilian Soc Mech Sci Eng. [Internet]. 2022 44(6):1–26. Available from: https://doi.org/10.1007/s40430-022-03514-x.

  9. Wu JJ, Huang LM, Zhao Q, Xie T. 4D printing: history and recent progress. Chinese J Polym Sci. English Ed. 2018;36(5):563–75.

    Article  CAS  Google Scholar 

  10. Haleem A, Javaid M, Professor A. 4D printing applications in dentistry. Curr Med Res Pract. [Internet]. 2018 [cited 2022 Dec 9]; Available from: https://doi.org/10.1016/j.cmrp.2018.12.005.

  11. Momeni FM, Mehdi Hassani NS, Liu X, Ni J. A review of 4D printing. Mater Des. 2017;15(122):42–79.

    Article  Google Scholar 

  12. Pei E. 4D printing - revolution or fad? Assem Autom [Internet]. 2014 Apr 1 [cited 2022 Dec 9];34(2):123–7. Available from: https://doi.org/10.1108/AA-02-2014-014.

  13. Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE [Internet]. 2002 ;2002(119). Available from: https://pubmed.ncbi.nlm.nih.gov/11842240/. Accessed 9 Dec 2022.

  14. Burger EH, Klein-Nulend J, Van der Plas A, Nijweide PJ. Function of osteocytes in bone--their role in mechanotransduction. J Nutr [Internet]. 1995 [cited 2022 Dec 9];125(7 Suppl). Available from: https://pubmed.ncbi.nlm.nih.gov/7602386/.

  15. Choi J, Kwon OC, Jo W, Lee HJ, Moon MW. 4D printing technology: a review. https://home.liebertpub.com/3dp [Internet]. 2015 Dec 31 [cited 2022 Dec 9];2(4):159–67. Available from: https://doi.org/10.1089/3dp.2015.0039.

  16. Haleem A, Javaid M. Expected role of four-dimensional (4D) CT and four-dimensional (4D) MRI for the manufacturing of smart orthopaedics implants using 4D printing. J Clin Orthop Trauma. [Internet]. 2019 Oct 1 ;10(Suppl 1):S234. Available from: /pmc/articles/PMC6823805/. Accessed 9 Dec 2022.

  17. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Sci. [Internet]. 1993;260(5111):1124–7. Available from: https://pubmed.ncbi.nlm.nih.gov/7684161/. Accessed 9 Dec 2022.

  18. Zhou J, Sheiko SS. Reversible shape-shifting in polymeric materials. J Polym Sci Part B Polym Phys [Internet]. 2016 Jul 15 [cited 2022 Dec 9];54(14):1365–80. Available from: https://doi.org/10.1002/polb.24014.

  19. Haleem A, Javaid M, Singh RP, Suman R. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Ind Eng Polym Res. 2021;4(4):301–11.

    Google Scholar 

  20. Process steps of additive 3D layering: (a) digital model of the... | Download Scientific Diagram [Internet].  Available from: https://www.researchgate.net/figure/Process-steps-of-additive-3D-layering-a-digital-model-of-the-component-b-virtual_fig1_321491235. Accessed 18 Apr 2023.

  21. Haleem A, Javaid M. Polyether ether ketone (PEEK) and its manufacturing of customised 3D printed dentistry parts using additive manufacturing. Clin Epidemiol Glob Heal. [Internet]. 2019 7(4):654–660. Available from: http://cegh.net/article/S2213398419300636/fulltext.

  22. Firth J, Gaisford S, Basit AW. A new dimension: 4D printing opportunities in pharmaceutics. AAPS Adv Pharm Sci Ser. [Internet]. 2018 31:153–162. Available from: https://doi.org/10.1007/978-3-319-90755-0_8.

  23. Khare N, Shende P. Microneedle system: a modulated approach for penetration enhancement. 2021 [cited 2023 Apr 19];47(8):1183–92. Available from: https://doi.org/10.1080/03639045.2021.1992421.

  24. Demuth PC, Garcia-Beltran WF, Ai-Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv Funct Mater. [Internet]. 2013 23(2):161–172. Available from: https://pubmed.ncbi.nlm.nih.gov/23503923/.

  25. Han D, Morde RS, Mariani S, La Mattina AA, Vignali E, Yang C, et al. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater. [Internet]. 2020 30(11):1909197. Available from: https://doi.org/10.1002/adfm.201909197.

  26. Mukhopadhyay P, Sarkar K, Bhattacharya S, Bhattacharyya A, Mishra R, Kundu PP. pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr Polym. 2014;112:627–37.

    Article  CAS  PubMed  Google Scholar 

  27. Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. [Internet] 2006 12(4):969–979. Available from: https://pubmed.ncbi.nlm.nih.gov/16674308/.

  28. Lee Y Bin, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E. Induction of four-dimensional spatiotemporal geometric transformations in high cell density tissues via shape-changing hydrogels. Adv Funct Mater. [Internet]. 2021 1;31(24). Available from: https://www.advancedsciencenews.com/shape-shifting-4d-materials-provide-new-opportunity-for-tissue-engineering/. Accessed 7 Dec 2022.

  29. Zu S, Wang Z, Zhang S, Guo Y, Chen C, Zhang Q, et al. A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Mater Today Chem. 2022;1(24):100789.

    Article  Google Scholar 

  30. Khan A, Iqbal MJ, Amin S, Bilal H, Bilquees NA, et al. 4D printing: the dawn of “Smart” drug delivery systems and biomedical applications. J Drug Deliv Ther. 2021;15;11(5-S):131–7.

    Article  Google Scholar 

  31. Melocchi A, Uboldi M, Inverardi N, Briatico-Vangosa F, Baldi F, Pandini S, et al. Expandable drug delivery system for gastric retention based on shape memory polymers: development via 4D printing and extrusion. Int J Pharm. [Internet]. 2019 Nov 25;571. Available from: https://pubmed.ncbi.nlm.nih.gov/31526838/. Accessed 7 Dec 2022.

  32. Stoychev G, Puretskiy N, Ionov L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. [Internet]. 2011 22;7(7):3277–9. Available from: https://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05109a. Accessed 9 Dec 2022.

  33. Azam A, Laflin KE, Jamal M, Fernandes R, Gracias DH. Self-folding micropatterned polymeric containers. Biomed Microdevice. [Internet]. 2011 [cited 2022 Dec 9];13(1):51–8. Available from: https://doi.org/10.1007/s10544-010-9470-x.

  34. Yoon C, Xiao R, Park J, Cha J, Nguyen TD, Gracias DH. Functional stimuli responsive hydrogel devices by self-folding. Smart Mater Struct. [Internet]. 2014 Aug 11 [cited 2022 Dec 9];23(9):094008. Available from: https://doi.org/10.1088/0964-1726/23/9/094008.

  35. Kim DI, Lee H, Kwon SH, Sung YJ, Song WK, Park S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv Healthc Mater. 2020 [cited 2023 Jul 29];9(13). Available from: https://www.researchgate.net/publication/341512040_Bilayer_Hydrogel_Sheet-Type_Intraocular_Microrobot_for_Drug_Delivery_and_Magnetic_Nanoparticles_Retrieval.

  36. Shende P, Trivedi R. 3D printed bioconstructs: regenerative modulation for genetic expression. Stem Cell Rev Rep. [Internet]. 2021 17(4):1239–1250. Available from: https://doi.org/10.1007/s12015-021-10120-2.

  37. Jadhav RG, Das AK. Four dimensional printing in healthcare. 3D Print Med. 2017;1:207–18.

    Article  Google Scholar 

  38. Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep. 20166(1):1–11. Available from: https://www.nature.com/articles/srep28714.

  39. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. [Internet]. 2017 29(46):1703443. Available from: https://doi.org/10.1002/adma.201703443.

  41. Willemen NGA, Morsink MAJ, Veerman D, da Silva CF, Cardoso JC, Souto EB, et al. From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. Bio-Design Manuf. 2021 51 [Internet]. 2021 Sep 4 [cited 2022 Dec 7];5(1):85–106. Available from: https://doi.org/10.1007/s42242-021-00157-0.

  42. Shakibania S, Ghazanfari L, Raeeszadeh-Sarmazdeh M, Khakbiz M. Medical application of biomimetic 4D printing. Drug Dev Ind Pharm. [Internet]. 2021;47(4):521–34. Available from: https://www.academia.edu/80150594/Medical_application_of_biomimetic_4D_printing. Accessed 7 Dec 2022.

  43. Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, et al. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm. [Internet]. 2019 25;559:299–311. Available from: https://pubmed.ncbi.nlm.nih.gov/30707934/. Accessed 7 Dec 2022.

  44. Miao S, Cui H, Nowicki M, Lee SJ, Almeida J, Zhou X, et al. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication. 2018 May 2;10(3).

  45. Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv [Internet]. 2020 Jun 1 [cited 2022 Dec 7];6(26). Available from: https://doi.org/10.1126/sciadv.abb5067

  46. Mei X, Zhu D, Li J, Huang K, Hu S, Li Z, et al. A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. Med [Internet]. 2021 Nov 12;2(11):1253-1268.e4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34825239. Accessed 9 Dec 2022.

  47. Kabirian F, Mela P, Heying R. 4D printing applications in the development of smart cardiovascular implants. Front Bioeng Biotechnol. 2022;25(10):772.

    Google Scholar 

  48. (PDF) Dental 4D printing: an innovative approach [Internet]. [cited 2023 Jan 20]. Available from: https://www.researchgate.net/publication/328783223_Dental_4D_Printing_An_Innovative_Approach.

  49. Grinberg D, Siddique S, Le MQ, Liang R, Capsal JF, Cottinet PJ. 4D printing based piezoelectric composite for medical applications. J Polym Sci Part B Polym Phys. 2019;57(2):109–15.

    Article  CAS  Google Scholar 

  50. Stanco D, Urbán P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: current advances, challenges and regulatory considerations. Bioprinting. 2020;1(20):e00103.

    Article  Google Scholar 

  51. Grigoryan B, Sazer DW, Avila A, Albritton JL, Padhye A, Ta AH, et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci Rep [Internet]. 2021 1;11(1):3171. Available from: https://mdanderson.elsevierpure.com/en/publications/development-characterization-and-applications-of-multi-material-s. Accessed 9 Dec 2022.

  52. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;30(586):119594.

    Article  Google Scholar 

  53. Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomater. [Internet]. 2019198:204–216. Available from: https://pubmed.ncbi.nlm.nih.gov/30244825/.

  54. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomater. [Internet]. 2009 30(30):5910–5917. Available from: https://pubmed.ncbi.nlm.nih.gov/19664819/.

  55. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. [Internet]. 2015 7(285):285ra64. Available from: /pmc/articles/PMC4495899/.

  56. Park J, Kalinin Y V., Kadam S, Randall CL, Gracias DH. Design for a lithographically patterned bioartificial endocrine pancreas. Artif Organs. [Internet]. 2013 37(12):1059–1067. Available from: https://pubmed.ncbi.nlm.nih.gov/23876103/.

  57. Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. [Internet]. 2020 101:26–42. Available from: https://pubmed.ncbi.nlm.nih.gov/31672585/.

  58. Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym. 2019;1(207):143–59.

    Article  Google Scholar 

  59. Wang T, Chen L, Shen T, Wu D. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. Int J Biol Macromol. [Internet]. 2016 93(Pt A):775–782. Available from: https://pubmed.ncbi.nlm.nih.gov/27640090/.

  60. Li C, Wang K, Zhou X, Li T, Xu Y, Qiang L, et al. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater. [Internet]. 2019 1;14(2). Available from: https://pubmed.ncbi.nlm.nih.gov/30557856/. Accessed 20 Jan 2023.

  61. Yang J, Van Lith R, Baler K, Hoshi RA, Ameer GA. A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules. [Internet]. 2014 15(11):3942–3952. Available from: https://doi.org/10.1021/bm5010004.

  62. Chen JP, Tsai MJ, Liao HT. Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B Biointerfaces. [Internet]. 2013 110:120–129. Available from: https://pubmed.ncbi.nlm.nih.gov/23711782/.

  63. Chen X, Zhao Y, Geng S, Miron RJ, Zhang Q, Wu C, et al. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Int J Nanomed. [Internet]. 2015 10(1):839–846. Available from: https://www.dovepress.com/in-vivo-experimental-study-on-bone-regeneration-in-critical-bone-defec-peer-reviewed-fulltext-article-IJN.

  64. Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, et al. Thermoresponsive citrate-based graphene oxide scaffold enhances bone regeneration from BMP9-stimulated adipose-derived mesenchymal stem cells. ACS Biomater Sci Eng. 2018;4(8):2943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol. [Internet]. 2019 121:38–54. Available from: https://pubmed.ncbi.nlm.nih.gov/30291931/.

  66. Wu J, Zheng K, Huang X, Liu J, Liu H, Boccaccini AR, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. [Internet]. 2019 91:60–71. Available from: https://pubmed.ncbi.nlm.nih.gov/30986530/.

  67. Vojtova L, Michlovska L, Valova K, Zboncak M, Trunec M, Castkova K, et al. The effect of the thermosensitive biodegradable PLGAPEGPLGA copolymer on the rheological, structural and mechanical properties of thixotropic self-hardening tricalcium phosphate cement. Int J Mol Sci. [Internet]. 2019 Jan 2 [cited 2023 Jan 20];20(2). Available from: https://pubmed.ncbi.nlm.nih.gov/30658476/.

  68. Nafee N, Zewail M, Boraie N. Alendronate-loaded, biodegradable smart hydrogel: a promising injectable depot formulation for osteoporosis. J Drug Target. [Internet]. 2018 26(7):563–575. Available from: https://pubmed.ncbi.nlm.nih.gov/29073792/.

  69. Gao C, Cai Y, Kong X, Han G, Yao J. Development and characterization of injectable chitosan-based hydrogels containing dexamethasone/rhBMP-2 loaded hydroxyapatite nanoparticles. Mater Lett. 2013;15(93):312–5.

    Article  Google Scholar 

  70. Liu X, Yu B, Huang Q, Liu R, Feng Q, Cai Q, et al. In vitro BMP-2 peptide release from thiolated chitosan based hydrogel. Int J Biol Macromol. [Internet]. 2016 93(Pt A):314–321. Available from: https://pubmed.ncbi.nlm.nih.gov/27544436/.

  71. Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. [Internet]. 2006 24(20):3282–3292. Available from: https://pubmed.ncbi.nlm.nih.gov/16829652/.

  72. Schreibmann. Four-dimensional (4D) motion detection to correct respiratory effects in treatment response assessment using molecular imaging biomarkers. TCRT Express [Internet]. 2013 [cited 2023 Jul 29];13(6). Available from: https://pubmed.ncbi.nlm.nih.gov/24000982/.

  73. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol [Internet]. 2004 14(1):81–90. Available from: https://pubmed.ncbi.nlm.nih.gov/14752736/.

  74. Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, et al. Advances in 4D medical imaging and 4D radiation therapy. 2008 [cited 2022 Dec 7];7(1):67–81. Available from: https://doi.org/10.1177/153303460800700109.

Download references

Acknowledgements

I would like to thank Dr. Pravin Shende for their patient instruction, passionate support, and proofreading of the review article.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally. Dr. Pravin Shende: conceptualization and supervision. Ms. Kadambari Borse: data curation, writing — original draft preparation, reviewing, and editing.

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borse, K., Shende, P. 3D-to-4D Structures: an Exploration in Biomedical Applications. AAPS PharmSciTech 24, 163 (2023). https://doi.org/10.1208/s12249-023-02626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02626-4

Keywords

Navigation