Skip to main content

Can the Oral Bioavailability of the Discontinued Prostate Cancer Drug Galeterone Be Improved by Processing Method? KinetiSol® Outperforms Spray Drying in a Head-to-head Comparison


Galeterone, a novel prostate cancer candidate treatment, was discontinued after a Phase III clinical trial due to lack of efficacy. Galeterone is weakly basic and exhibits low solubility in biorelevant media (i.e., ~ 2 µg/mL in fasted simulated intestinal fluid). It was formulated as a 50–50 (w/w) galeterone-hypromellose acetate succinate spray-dried dispersion to increase its bioavailability. Despite this increase, the bioavailability of this formulation may have been insufficient and contributed to its clinical failure. We hypothesized that reformulating galeterone as an amorphous solid dispersion by KinetiSol® compounding could increase its bioavailability. In this study, we examined the effects of composition and manufacturing technology (Kinetisol and spray drying) on the performance of galeterone amorphous solid dispersions. KinetiSol compounding was utilized to create galeterone amorphous solid dispersions containing the complexing agent hydroxypropyl-β-cyclodextrin or hypromellose acetate succinate with lower drug loads that both achieved a ~ 6 × increase in dissolution performance versus the 50–50 spray-dried dispersion. When compared to a spray-dried dispersion with an equivalent drug load, the KinetiSol amorphous solid dispersions formulations exhibited ~ 2 × exposure in an in vivo rat study. Acid–base surface energy analysis showed that the equivalent composition of the KinetiSol amorphous solid dispersion formulation better protected the weakly basic galeterone from premature dissolution in acidic media and thereby reduced precipitation, inhibited recrystallization, and extended the extent of supersaturation during transit into neutral intestinal media.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The data that support the findings of this study are available from the corresponding author, SAT, upon reasonable request.


  1. Gala UH, Miller DA, Williams RO. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta - Rev Cancer [Internet]. 2020;1873(1):188319. Available from:

  2. Rodriguez-Aller M, Guillarme D, Veuthey JL, Gurny R. Strategies for formulating and delivering poorly water-soluble drugs. J Drug Deliv Sci Technol [Internet]. 2015;30:342–51. Available from:

  3. Van Den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol [Internet]. 2012;9(2):e79–85. Available from:

  4. Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev [Internet]. 2016;100:102–15. Available from:

  5. Thompson SA, Williams RO. Specific mechanical energy – an essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev [Internet]. 2021;173:374–93. Available from:

  6. Ellenberger DJ, Miller DA, Williams RO. Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: a review. AAPS PharmSciTech. 2018;19(5):1933–56.

    Article  CAS  PubMed  Google Scholar 

  7. Purushottamachar P, Godbole AM, Gediya LK, Martin MS, Vasaitis TS, Kwegyir-Afful AK, et al. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer. J Med Chem. 2013;56(12):4880–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKay RR, Mamlouk K, Montgomery B, Taplin M-E. Treatment with galeterone in an elderly man with castration-resistant prostate cancer: a case report. clin genitourin cancer [Internet]. 2015 Aug;13(4):e325–8. Available from:

  9. Taplin M-E, Chu F, Morrison JP, Pili R, Rettig MB, Stephenson J, et al. Abstract CT-07: ARMOR1: safety of galeterone (TOK-001) in a phase 1 clinical trial in chemotherapy naïve patients with castration resistant prostate cancer (CRPC). Cancer Res. 2012;72(8_Supplement):CT-07-CT-07.

  10. Taplin M-E, Montgomery RB. ARMOR2: Galeterone in progressive CRPC patients who have failed oral therapy. J Clin Oncol. 2014;32(4_suppl):71–71.

    Article  Google Scholar 

  11. Montgomery B, Eisenberger MA, Rettig MB, Chu F, Pili R, Stephenson JJ, et al. Androgen receptor modulation optimized for response (ARMOR) phase i and II studies: galeterone for the treatment of castration-resistant prostate cancer. Clin Cancer Res. 2016;22(6):1356–63.

    Article  CAS  PubMed  Google Scholar 

  12. Casebier D, Sentissi A, Moreton C, Turnbull M. Novel compositions and methods for treating prostate cancer. World Intellectual Property Organization; WO 2013/012959 A1, 2013.

  13. Kramer WG, Vince B, McGarry C. Comparison of the pharmacokinetics (PK) of galeterone novel oral formulations. J Clin Oncol. 2013;31(15_suppl):e16075–e16075.

    Article  Google Scholar 

  14. Taplin ME, Antonarakis ES, Ferrante KJ, Horgan K, Blumenstein B, Saad F, et al. Androgen receptor modulation optimized for response—splice variant: a phase 3, randomized trial of galeterone versus enzalutamide in androgen receptor splice variant-7–expressing metastatic castration-resistant prostate cancer. Eur Urol [Internet]. 2019;76(6):843–51. Available from:

  15. Yu T, Huang T, Yu L, Nantasenamat C, Anuwongcharoen N, Piacham T, et al. Exploring the chemical space of CYP17A1 inhibitors using cheminformatics and machine learning. Molecules [Internet]. 2023 Feb 9;28(4):1679. Available from:

  16. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: importance of congruent release for enhanced performance. Mol Pharm. 2019;16(3):1327–39.

    Article  CAS  PubMed  Google Scholar 

  17. Que C, Deac A, Zemlyanov DY, Qi Q, Indulkar AS, Gao Y, Zhang GG, Taylor LS. Impact of drug–polymer intermolecular interactions on dissolution performance of copovidone-based amorphous solid dispersions. Mol Pharm. 2021;18(9):3496–508.

    Article  CAS  PubMed  Google Scholar 

  18. Yang R, Mann AKP, Van Duong T, Ormes JD, Okoh GA, Hermans A, et al. Drug release and nanodroplet formation from amorphous solid dispersions: insight into the roles of drug physicochemical properties and polymer selection. Mol Pharm. 2021;18(5):2066–81.

    Article  CAS  PubMed  Google Scholar 

  19. Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release mechanisms of amorphous solid dispersions: role of drug-polymer phase separation and morphology. J Pharm Sci [Internet]. 2022;112(1):304–17. Available from:

  20. Que C, Lou X, Zemlyanov DY, Mo H, Indulkar AS, Gao Y, et al. Insights into the dissolution behavior of ledipasvir-copovidone amorphous solid dispersions: role of drug loading and intermolecular interactions. Mol Pharm. 2019;16(12):5054–67.

    Article  CAS  PubMed  Google Scholar 

  21. Gala U, Miller D, Williams RO III. Improved dissolution and pharmacokinetics of abiraterone through KinetiSol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12(4):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gala UH, Miller DA, Su Y, Spangenberg A, Williams RO (Bill. The effect of drug loading on the properties of abiraterone–hydroxypropyl beta cyclodextrin solid dispersions processed by solvent free KinetiSol® technology. Eur J Pharm Biopharm [Internet]. 2021;165(May):52–65. Available from:

  23. Agrawal AM, Dudhedia MS, Patel AD, Raikes MS. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm [Internet]. 2013;457(1):71–81. Available from:

  24. Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In vitro and in vivo behaviors of kinetisol and spray-dried amorphous solid dispersions of a weakly basic drug and ionic polymer †. Mol Pharm. 2020;17(8):2789–808.

    Article  CAS  PubMed  Google Scholar 

  25. Mahmah O, Tabbakh R, Kelly A, Paradkar A. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol. 2014;66(2):275–84.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Mann AK, Zhang D, Yang Z. Processing impact on in vitro and in vivo performance of solid dispersions—a comparison between hot-melt extrusion and spray drying. Pharmaceutics. 2021;13(8):1307.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thompson SA, Davis DA, Moon C, Williams RO. Increasing drug loading of weakly acidic telmisartan in amorphous solid dispersions through pH modification during hot-melt extrusion. Mol Pharm. 2022;19(1):318–31.

    Article  CAS  PubMed  Google Scholar 

  28. Thielmann F, Burnett DJ, Heng JYY. Determination of the surface energy distributions of different processed lactose. Drug Dev Ind Pharm. 2007;33(11):1240–53.

    Article  CAS  PubMed  Google Scholar 

  29. Dorris GM, Gray DG. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interface Sci. 1980;77(2):353–62.

    Article  CAS  Google Scholar 

  30. Della Volpe C, Siboni S. Acid-base surface free energies of solids and the definition of scales in the Good-van Oss-Chaudhury theory. J Adhes Sci Technol. 2000;14(2):235–72.

    Article  CAS  Google Scholar 

  31. Donnet JB, Park SJ, Balard H. Evaluation of specific interactions of solid surfaces by inverse gas chromatography - a new approach based on polarizability of the probes. Chromatographia. 1991;31(9–10):434–40.

    Article  CAS  Google Scholar 

  32. Njar VCO, Brodie AMH. Discovery and development of galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J Med Chem. 2015;58(5):2077–87.

    Article  CAS  PubMed  Google Scholar 

  33. Ohtake S, Shalaev E. Effect of water on the chemical stability of amorphous pharmaceuticals: I. small molecules. J Pharm Sci [Internet]. 2013;102(4):1139–54. Available from:

  34. Sarabu S, Butreddy A, Bandari S, Batra A, Lawal K, Chen NN, et al. Preliminary investigation of peroxide levels of Plasdone™ copovidones on the purity of atorvastatin calcium amorphous solid dispersions: Impact of plasticizers on hot melt extrusion processability. J Drug Deliv Sci Technol [Internet]. 2022;70(February):103190. Available from:

  35. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm Res [Internet]. 2016;33(10):2445–58. Available from:

  36. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Sodium lauryl sulfate competitively interacts with HPMC-AS and consequently reduces oral bioavailability of posaconazole/HPMC-AS amorphous solid dispersion. Mol Pharm. 2016;13(8):2787–95.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang W, Hate SS, Russell DJ, Hou HH, Nagapudi K. Impact of surfactant and surfactant-polymer interaction on desupersaturation of clotrimazole. J Pharm Sci [Internet]. 2019;108(10):3262–71. Available from:

  39. Lu J, Obara S, Liu F, Fu W, Zhang W, Kikuchi S. Melt extrusion for a high melting point compound with improved solubility and sustained release. AAPS PharmSciTech. 2018;19(1):358–70.

    Article  CAS  PubMed  Google Scholar 

  40. Monschke M, Kayser K, Wagner KG. Influence of particle size and drug load on amorphous Solid dispersions containing pH-dependent soluble polymers and the weak base ketoconazole. AAPS PharmSciTech. 2021;22(1):1–11.

    Article  Google Scholar 

  41. BÜCHI Labortechnik AG. Mini spray dryer B-290: technical data sheet [Internet]. New Castle, DE: BUCHI Corporation; p. 1–9. Available from:

  42. Macheras P, Chryssafidis P. Revising pharmacokinetics of oral drug absorption: I models based on biopharmaceutical/physiological and finite absorption time concepts. Pharmaceutical Research. 2020;37:1–3.

  43. Park HM, Chernish SM, Rosenek BD, Brunelle RL, Hargrove B, Wellman HN. Gastric emptying of enteric-coated tablets. Dig Dis Sci. 1984;29(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  44. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987;15(5):529–44.

    Article  CAS  PubMed  Google Scholar 

  45. Lubach JW, Chen JZ, Hau J, Imperio J, Coraggio M, Liu L, et al. Investigation of the rat model for preclinical evaluation of pH-dependent oral absorption in humans. Mol Pharm. 2013;10(11):3997–4004.

    Article  CAS  PubMed  Google Scholar 

  46. Gentilcore D, Vanis L, Teng JC, Wishart JM, Buckley JD, Rayner CK, et al. The oligosaccharide α-cyclodextrin has modest effects to slow gastric emptying and modify the glycaemic response to sucrose in healthy older adults. Br J Nutr. 2011;106(4):583–7.

    Article  CAS  PubMed  Google Scholar 

  47. Scott Sutton S, Magagnoli J, Hardin JW. Impact of pill burden on adherence, risk of hospitalization, and viral suppression in patients with HIV infection and AIDS receiving antiretroviral therapy. Pharmacotherapy. 2016;36(4):385–401.

    Article  CAS  PubMed  Google Scholar 

  48. Saboo S, Moseson DE, Kestur US, Taylor LS. Patterns of drug release as a function of drug loading from amorphous solid dispersions: a comparison of five different polymers. Eur J Pharm Sci [Internet]. 2020;155(July):105514. Available from:

  49. Ho R, Heng JYY. A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids. KONA Powder Part J. 2012;30(30):164–80.

    Google Scholar 

  50. Modi SR, Dantuluri AKR, Perumalla SR, Sun CC, Bansal AK. Effect of crystal habit on intrinsic dissolution behavior of celecoxib due to differential wettability. Cryst Growth Des. 2014;14(10):5283–92.

    Article  CAS  Google Scholar 

  51. Ho R, Naderi M, Heng JYY, Williams DR, Thielmann F, Bouza P, et al. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals. Pharm Res. 2012;29(10):2806–16.

    Article  CAS  PubMed  Google Scholar 

  52. Karde V, Ghoroi C. Influence of surface modification on wettability and surface energy characteristics of pharmaceutical excipient powders. Int J Pharm. 2014;475(1):351–63.

    Article  CAS  PubMed  Google Scholar 

  53. Varghese S, Ghoroi C. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int J Pharm [Internet]. 2017;533(1):145–55. Available from:

  54. Modi SR, Dantuluri AKR, Puri V, Pawar YB, Nandekar P, Sangamwar AT, et al. Impact of crystal habit on biopharmaceutical performance of celecoxib. Cryst Growth Des. 2013;13(7):2824–32.

    Article  CAS  Google Scholar 

  55. Brokešová J, Slámová M, Zámostný P, Kuentz M, Koktan J, Krejčík L, Vraníková B, Svačinová P, Šklubalová Z. Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. Eur J Pharm Sci. 2022;169:106087.

    Article  PubMed  Google Scholar 

  56. Burnett DJ, Khoo J, Naderi M, Heng JYY, Wang GD, Thielmann F. Effect of processing route on the surface properties of amorphous indomethacin measured by inverse gas chromatography. AAPS PharmSciTech. 2012;13(4):1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


Stephen A. Thompson was supported by AustinPx, Georgetown, TX, through a gift to support graduate education.

Author information

Authors and Affiliations



Conceptualization, Stephen Thompson, Urvi Gala, Daniel Davis Jr., Dave Miller, Sandra Kucera, and Robert Williams III; formal analysis, Stephen Thompson and Urvi Gala; investigation, Stephen Thompson; methodology, Stephen Thompson, Urvi Gala, Daniel Davis Jr., Dave Miller, Sandra Kucera, and Robert Williams III; supervision, Robert Williams III; writing—original draft, Stephen Thompson; writing—review & editing, Stephen Thompson, Urvi Gala, Daniel Davis Jr., Dave Miller, Sandra Kucera, and Robert Williams III.

Corresponding author

Correspondence to Stephen A. Thompson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, S.A., Gala, U., Davis, D.A. et al. Can the Oral Bioavailability of the Discontinued Prostate Cancer Drug Galeterone Be Improved by Processing Method? KinetiSol® Outperforms Spray Drying in a Head-to-head Comparison. AAPS PharmSciTech 24, 137 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: