Skip to main content
Log in

Development of Child-Friendly Lisdexamfetamine Chewable Tablets Using Ion Exchange Resin as a Taste-Masking Carrier Based on the Concept of Quality by Design (QbD)

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Taste masking is critical to improving the compliance of pediatric oral dosage forms. However, it is challenging for extremely bitter lisdexamfetamine dimesylate (LDX) with a long half-life and given in large dose. The present study aims to develop an immediate-release, taste-masked lisdexamfetamine chewable tablet. Lisdexamfetamine-resin complexes (LRCs) were prepared using the batch method. The molecular mechanism of taste masking was explored by PXRD, PLM, STA, and FT-IR. The results showed that taste masking was attributed to the ionic interaction between drug and the resin. The ion exchange process conformed to first-order kinetics. The rate-limiting step of drug release was the diffusion of ions inside the particles, and the concentration of H+ was the key factor for immediate release. The masking efficiency of the prepared LRCs in saliva exceeded 96%, and the drug could be completely released within 15 min in aqueous HCl (pH 1.2). Furthermore, the SeDeM expert system was used for the first time to comprehensively study the powder properties of LRCs and to quickly visualize their defects (compressibility, lubricity/stability, and lubricity/dosage). The selection of excipients was targeted rather than traditional screening, thus obtaining a robust chewable tablet formulation suitable for direct compression. Finally, the difference between chewable tablets containing LRCs and chewable tablets containing lisdexamfetamine dimesylate was compared by in vitro dissolution test, electronic tongue, and disintegration test. In conclusion, an immediate-released, child-friendly lisdexamfetamine chewable tablets without bitterness was successfully developed by the QbD approach, using the SeDeM system, which may help in further development of chewable tablets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Blick SK, Keating GM. Lisdexamfetamine. Paediatr Drugs. 2007;9(2):129–35; discussion 36-8. https://doi.org/10.2165/00148581-200709020-00007.

    Article  PubMed  Google Scholar 

  2. Elia J, Easley C, Kirkpatrick P. Lisdexamfetamine dimesylate. Nat Rev Drug Discov. 2007;6(5):343–4. https://doi.org/10.1038/nrd2315.

    Article  CAS  PubMed  Google Scholar 

  3. Pennick M. Absorption of lisdexamfetamine dimesylate and its enzymatic conversion to d-amphetamine. Neuropsychiatr Dis Treat. 2010;6(1):317–27. https://doi.org/10.2147/ndt.s9749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boellner SW, Stark JG, Krishnan S, Zhang Y. Pharmacokinetics of lisdexamfetamine dimesylate and its active metabolite, d-amphetamine, with increasing oral doses of lisdexamfetamine dimesylate in children with attention-deficit/hyperactivity disorder: a single-dose, randomized, open-label, crossover study. Clin Ther. 2010;32(2):252–64. https://doi.org/10.1016/j.clinthera.2010.02.011.

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan SM, Stark JG. Multiple daily-dose pharmacokinetics of lisdexamfetamine dimesylate in healthy adult volunteers. Curr Med Res Opin. 2008;24(1):33–40. https://doi.org/10.1185/030079908x242737.

    Article  CAS  PubMed  Google Scholar 

  6. Heal DJ, Cheetham SC, Smith SL. The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacol. 2009;57(7-8):608–18. https://doi.org/10.1016/j.neuropharm.2009.08.020.

    Article  CAS  Google Scholar 

  7. Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present—a pharmacological and clinical perspective. J Psychopharmacol. 2013;27(6):479–96. https://doi.org/10.1177/0269881113482532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biederman J, Krishnan S, Zhang Y, McGough JJ, Findling RL. Efficacy and tolerability of lisdexamfetamine dimesylate (NRP-104) in children with attention-deficit/hyperactivity disorder: a phase III, multicenter, randomized, double-blind, forced-dose, parallel-group study. Clin Ther. 2007;29(3):450–63. https://doi.org/10.1016/s0149-2918(07)80083-x.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu HJ, Wang JS, DeVane CL, Williard RL, Donovan JL, Middaugh LD, et al. The role of the polymorphic efflux transporter P-glycoprotein on the brain accumulation of d-methylphenidate and d-amphetamine. Drug Metab Dispos. 2006;34(7):1116–21. https://doi.org/10.1124/dmd.106.009605.

    Article  CAS  PubMed  Google Scholar 

  10. Jasinski DR, Krishnan S. Abuse liability and safety of oral lisdexamfetamine dimesylate in individuals with a history of stimulant abuse. J Psychopharmacol. 2009;23(4):419–27. https://doi.org/10.1177/0269881109103113.

    Article  CAS  PubMed  Google Scholar 

  11. Mistry P, Batchelor H, project SP-U. Evidence of acceptability of oral paediatric medicines: a review. J Pharm Pharmacol. 2017;69(4):361–76. https://doi.org/10.1111/jphp.12610.

    Article  CAS  PubMed  Google Scholar 

  12. Anand V, Kandarapu R, Garg S. Ion-exchange resins: carrying drug delivery forward. Drug Discov Today. 2001;6(17):905–14. https://doi.org/10.1016/s1359-6446(01)01922-5.

    Article  CAS  PubMed  Google Scholar 

  13. Han X, Zhang S, Chai Z, Dong Y, He W, Yin L, et al. In vitro and in vivo evaluation of the taste-masking efficiency of Amberlite IRP88 as drug carries in chewable tablets. J Drug Deliv Sci Technol. 2019;49:547–55. https://doi.org/10.1016/j.jddst.2018.12.002.

    Article  CAS  Google Scholar 

  14. Kim JI, Cho SM, Cui JH, Cao QR, Oh E, Lee BJ. In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex. Int J Pharm. 2013;455(1-2):31–9. https://doi.org/10.1016/j.ijpharm.2013.07.072.

    Article  CAS  PubMed  Google Scholar 

  15. Tan DCT, Ong JJ, Gokhale R, Heng PWS. Hot melt extrusion of ion-exchange resin for taste masking. Int J Pharm. 2018;547(1-2):385–94. https://doi.org/10.1016/j.ijpharm.2018.05.068.

    Article  CAS  PubMed  Google Scholar 

  16. Rajesh AM, Popat KM. Taste masking of azithromycin by resin complex and sustained release through interpenetrating polymer network with functionalized biopolymers. Drug Dev Ind Pharm. 2017;43(5):732–41. https://doi.org/10.1080/03639045.2016.1224894.

    Article  CAS  PubMed  Google Scholar 

  17. EMA: ICH Q8(R2) Guideline “Pharmaceutical Development” https://ich.org/page/quality-guidelines (2009). Accessed.

  18. Perez P, Sune-Negre JM, Minarro M, Roig M, Fuster R, Garcia-Montoya E, et al. A new expert systems (SeDeM diagram) for control batch powder formulation and preformulation drug products. Eur J Pharm Biopharm. 2006;64(3):351–9. https://doi.org/10.1016/j.ejpb.2006.06.008.

    Article  CAS  PubMed  Google Scholar 

  19. Zieschang L, Klein M, Jung N, Kramer J, Windbergs M. Formulation development of medicated chewing gum tablets by direct compression using the SeDeM-Diagram-Expert-System. Eur J Pharm Biopharm. 2019;144:68–78. https://doi.org/10.1016/j.ejpb.2019.09.003.

    Article  CAS  PubMed  Google Scholar 

  20. DEA: Lists of scheduling actions, controlled substances, regulated chemicals. https://www.deadiversion.usdoj.gov/schedules/orangebook/orangebook.pdf (2022). Accessed April 2022.

  21. Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Rational development of taste masked oral liquids guided by an electronic tongue. Int J Pharm. 2010;400(1-2):114–23. https://doi.org/10.1016/j.ijpharm.2010.08.042.

    Article  CAS  PubMed  Google Scholar 

  22. Boyd GE, Schubert J, Adamson AW. The exchange adsorption of ions from aqueous solutions by organic zeolites; ion-exchange equilibria. J Am Chem Soc. 1947;69(11):2818–29. https://doi.org/10.1021/ja01203a064.

    Article  CAS  PubMed  Google Scholar 

  23. Ichikawa H, Fujioka K, Adeyeye MC, Fukumori Y. Use of ion-exchange resins to prepare 100 μm-sized microcapsules with prolonged drug-release by the Wurster process. Int J Pharm. 2001;216(1-2):67–76. https://doi.org/10.1016/s0378-5173(01)00573-7.

    Article  CAS  PubMed  Google Scholar 

  24. Shang R, Liu C, Quan P, Zhao H, Fang L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int J Pharm. 2018;545(1-2):163–9. https://doi.org/10.1016/j.ijpharm.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  25. Deng Y, Wang T, Li J, Sun W, He H, Gou J, et al. Studies on the in vitro ion exchange kinetics and thermodynamics and in vivo pharmacokinetics of the carbinoxamine-resin complex. Int J Pharm. 2020;588:119779. https://doi.org/10.1016/j.ijpharm.2020.119779.

    Article  CAS  PubMed  Google Scholar 

  26. Reichenberg D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc. 1953;75(3):589–97. https://doi.org/10.1021/ja01099a022.

    Article  CAS  Google Scholar 

  27. Nofrerias I, Nardi A, Sune-Pou M, Boeckmans J, Sune-Negre JM, Garcia-Montoya E, et al. Optimization of the cohesion index in the SeDeM diagram expert system and application of SeDeM diagram: an improved methodology to determine the cohesion index. PLoS One. 2018;13(9):e0203846. https://doi.org/10.1371/journal.pone.0203846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scholtz JC, Steenekamp JH, Hamman JH, Tiedt LR. The SeDeM expert diagram system: its performance and predictability in direct compressible formulations containing novel excipients and different types of active ingredients. Powder Technol. 2017;312:222–36. https://doi.org/10.1016/j.powtec.2017.02.019.

    Article  CAS  Google Scholar 

  29. Aguilar-Díaz JE, García-Montoya E, Pérez-Lozano P, Suñe-Negre JM, Miñarro M, Ticó JR. The use of the SeDeM Diagram expert system to determine the suitability of diluents–disintegrants for direct compression and their use in formulation of ODT. Eur J Pharm Biopharm. 2009;73(3):414–23. https://doi.org/10.1016/j.ejpb.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  30. Sune-Negre JM, Perez-Lozano P, Minarro M, Roig M, Fuster R, Hernandez C, et al. Application of the SeDeM diagram and a new mathematical equation in the design of direct compression tablet formulation. Eur J Pharm Biopharm. 2008;69(3):1029–39. https://doi.org/10.1016/j.ejpb.2008.01.020.

    Article  CAS  PubMed  Google Scholar 

  31. Sune-Negre JM. SeDeM diagram: a new expert system for the formulation of Drugs in solid form. Expert Systems for Human, Materials and Automation. 2011.

  32. FDA: Center for Drug Evaluation and Research (CDER). APPLICATION NUMBER: 208510Orig1s000 CHEMISTRY REVIEW(S). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208510Orig1s000ChemR.pdf Accessed.

  33. United States Pharmacopeia and the National Formulary (USP-NF). Chapter 711 Dissolution. Rockville; US Pharmacopeial Convention; 2022.

  34. Chandrasekaran P, Kandasamy R. Development of oral flexible tablet (OFT) formulation for pediatric and geriatric patients: a novel age-appropriate formulation platform. AAPS PharmSciTech. 2017;18(6):1972–86. https://doi.org/10.1208/s12249-016-0666-0.

    Article  CAS  PubMed  Google Scholar 

  35. FDA: Quality attribute considerations for chewable tablets guidance for industry. https://www.fda.gov/media/98598/download (2018). Accessed August 2018.

  36. Gupta A, Chidambaram N, Khan MA. An index for evaluating difficulty of chewing index for chewable tablets. Drug Dev Ind Pharm. 2015;41(2):239–43. https://doi.org/10.3109/03639045.2013.858736.

    Article  CAS  PubMed  Google Scholar 

  37. Spillane W. Synthesis and taste properties of sodium disubstituted phenylsulfamates. Structure-taste relationships for sweet and bitter/sweet sulfamates. Food Chem. 1993;47(4):363–9. https://doi.org/10.1016/0308-8146(93)90178-i.

    Article  CAS  Google Scholar 

  38. Rodgers S, Glen RC, Bender A. Characterizing bitterness: identification of key structural features and development of a classification model. J Chem Inf Model. 2006;46(2):569–76. https://doi.org/10.1021/ci0504418.

    Article  CAS  PubMed  Google Scholar 

  39. EGaRE W. The Donnan law and its application to ion exchanger polymers. Proceed Royal Soc London Ser A Math Phys Sci. 1997;268(1334):339–49. https://doi.org/10.1098/rspa.1962.0145.

    Article  Google Scholar 

  40. Blaug SM, Huang WT. Interaction of dextroamphetamine sulfate with spray-dried lactose. J Pharm Sci. 1972;61(11):1770–5. https://doi.org/10.1002/jps.2600611116.

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Levons J, Narang AS, Raghavan K, Rao VM. Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility. AAPS PharmSciTech. 2011;12(4):1248–63. https://doi.org/10.1208/s12249-011-9677-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ekmekciyan N, Tuglu T, El-Saleh F, Muehlenfeld C, Stoyanov E, Quodbach J. Competing for water: a new approach to understand disintegrant performance. Int J Pharm. 2018;548(1):491–9. https://doi.org/10.1016/j.ijpharm.2018.07.025.

    Article  CAS  PubMed  Google Scholar 

  43. Berardi A, Bisharat L, Blaibleh A, Pavoni L, Cespi M. A simple and inexpensive image analysis technique to study the effect of disintegrants concentration and diluents type on disintegration. J Pharm Sci. 2018;107(10):2643–52. https://doi.org/10.1016/j.xphs.2018.06.008.

    Article  CAS  PubMed  Google Scholar 

  44. Deng Y, Shen L, Yang Y, Shen J. Development of nanoparticle-based orodispersible palatable pediatric formulations. Int J Pharm. 2021;596:120206. https://doi.org/10.1016/j.ijpharm.2021.120206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao MRP, Bhutada K, Kaushal P. Taste evaluation by electronic tongue and bioavailability enhancement of efavirenz. AAPS PharmSciTech. 2019;20(2):56. https://doi.org/10.1208/s12249-018-1277-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Chunmei Zhu: conceptualization, methodology, investigation, software, writing—original draft preparation. Jinmin Chen: data curation, writing—original draft preparation. Limin Shi: visualization, investigation. Qing Liu: validation. Chunfeng Liu: investigation. Fuli Zhang: writing—review and editing. Haoxiang Wu: conceptualization, methodology, supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Haoxiang Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Chen, J., Shi, L. et al. Development of Child-Friendly Lisdexamfetamine Chewable Tablets Using Ion Exchange Resin as a Taste-Masking Carrier Based on the Concept of Quality by Design (QbD). AAPS PharmSciTech 24, 132 (2023). https://doi.org/10.1208/s12249-023-02592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02592-x

Keywords

Navigation