Skip to main content
Log in

Inhaled Adjunct Therapy with Second-Line Drug Candidates for Dose Reduction in Chemotherapeutic Regimens for Multi-drug-Resistant Tuberculosis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(l-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25–0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25–0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anonymous. Global Tuberculosis Report 202. Geneva: World Health Organization; 2022. p. 68.

    Google Scholar 

  2. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of highly drug-resistant pulmonary tuberculosis. NEJM. 2020;382(10):893–902. https://doi.org/10.1056/NEJMoa1901814.

    Article  CAS  PubMed  Google Scholar 

  3. Keam SJ. Pretomanid: first approval. Drugs. 2019;79:1797–803.

    Article  PubMed  Google Scholar 

  4. Foti C, Piperno A, Giuffrè O. Oxazolidinone antibiotics: chemical, biological and analytical aspects. Molecules (Basel, Switzerland). 2021;26(14):4280. https://doi.org/10.3390/molecules26144280.

    Article  CAS  PubMed  Google Scholar 

  5. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. NEJM. 2012;367(16):1508–18. https://doi.org/10.1056/NEJMoa1201964.

    Article  CAS  PubMed  Google Scholar 

  6. Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res. 2020;20:68–97.

    Article  Google Scholar 

  7. Zhu T, Friedrich SO, Diacon A, Wallis RS. Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(6):3306–11. https://doi.org/10.1128/aac.01920-13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andrews J. To be or not to be exclusive: the sutezolid story. Lancet Glob Health. 2016;4(2):e89–90. https://doi.org/10.1016/S2214-109X(15)00285-5.

    Article  PubMed  Google Scholar 

  9. Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol. 2009;2(3):215–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kmentova I, Sutherland HS, Palmer BD, Blaser A, Franzblau SG, Wan B, et al. Synthesis and structure− activity relationships of aza-and diazabiphenyl analogues of the antitubercular drug (6 S)-2-nitro-6-{[4-(trifluoromethoxy) benzyl] oxy}-6, 7-dihydro-5 H-imidazo [2, 1-b][1, 3] oxazine (PA-824). J Med Chem. 2010;53(23):8421–39.

    Article  CAS  PubMed  Google Scholar 

  11. Upton A, Cho S, Yang T, Kim Y, Wang Y, Lu Y, et al. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  12. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962–6. https://doi.org/10.1038/35016103.

    Article  CAS  PubMed  Google Scholar 

  13. Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2005;49(6):2289–93. https://doi.org/10.1128/aac.49.6.2289-2293.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ntshangase S, Shobo A, Kruger HG, Asperger A, Niemeyer D, Arvidsson PI, et al. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging. Xenobiotica. 2018;48(9):938–44. https://doi.org/10.1080/00498254.2017.1375168.

    Article  CAS  PubMed  Google Scholar 

  15. Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci. 2007;32(2):140–50. https://doi.org/10.1016/j.ejps.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  16. Ranjan R, Srivastava A, Bharti R, Roy T, Verma S, Ray L, et al. Preclinical development of inhalable d-cycloserine and ethionamide to overcome pharmacokinetic interaction and enhance efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(6):e00099-e119. https://doi.org/10.1128/aac.00099-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verma RK, Germishuizen WA, Motheo MP, Agrawal AK, Singh AK, Mohan M, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother. 2013;57(2):1050–2. https://doi.org/10.1128/aac.01897-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olivier KN, Shaw PA, Glaser TS, Bhattacharyya D, Fleshner M, Brewer CC, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11(1):30–5. https://doi.org/10.1513/AnnalsATS.201307-231OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoppentocht M, Akkerman OW, Hagedoorn P, Alffenaar JW, van der Werf TS, Kerstjens HA, et al. Tolerability and pharmacokinetic evaluation of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients. PloS one. 2016;11(3):e0149768. https://doi.org/10.1371/journal.pone.0149768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2613–9. https://doi.org/10.1128/aac.02346-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barbachyn MR, Hutchinson DK, Brickner SJ, Cynamon MH, Kilburn JO, Klemens SP, et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem. 1996;39(3):680–5.

    Article  CAS  PubMed  Google Scholar 

  22. Raghuvanshi RS, Misra A, Talwar GP, Levy RJ, Labhasetwar V. Enhanced immune response with a combination of alum and biodegradable nanoparticles containing tetanus toxoid. J Microencaps. 2001;18(6):723–32. https://doi.org/10.1080/02652040110055261.

    Article  CAS  Google Scholar 

  23. Kaur J, Muttil P, Verma RK, Kumar K, Yadav AB, Sharma R, et al. A hand-held apparatus for “nose-only” exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. Eur J Pharm Sci. 2008;34(1):56–65. https://doi.org/10.1016/j.ejps.2008.02.008.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta A, Sharma D, Meena J, Pandya S, Sachan M, Kumar S, et al. Preparation and preclinical evaluation of inhalable particles containing rapamycin and anti-tuberculosis agents for induction of autophagy. Pharm Res. 2016;33(8):1899–912.

    Article  CAS  PubMed  Google Scholar 

  25. Gairola S, Ram C, Syed AM, Doye P, Kulhari U, Mugale MN, et al. Nootkatone confers antifibrotic effect by regulating the TGF-β/SMAD signaling pathway in mouse model of unilateral ureteral obstruction. Eur J Pharmacol. 2021;910: 174479.

    Article  CAS  PubMed  Google Scholar 

  26. Bharti R, Roy T, Verma S, Reddy DVS, Shafi H, Verma K, et al. Transient, inhaled gene therapy with gamma interferon mitigates pathology induced by host response in a mouse model of tuberculosis. Tuberculosis (Edinb). 2022;134:102198. https://doi.org/10.1016/j.tube.2022.102198.

    Article  CAS  PubMed  Google Scholar 

  27. Singh AK, Verma RK, Mukker JK, Yadav AB, Muttil P, Sharma R, et al. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis (Edinb). 2021;128:102081. https://doi.org/10.1016/j.tube.2021.102081.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This is CDRI Manuscript Number 05/2023/AM. Compounds used in this work were donated by Prof. Andrew M. Thompson, Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.

Funding

This work was supported by the Indian Council of Medical Research (AMR/IN/112/2017-ECD-II to A. M.) and the Norwegian Research Council (Frimedbio 275873 and Bedrehelse 273319 to G. G.). S.V., A.S., R.B., D.V.S.R., H.S., T.R., K.V., S.K.R., L.A., and LR received fellowships from CSIR, ICMR, and UGC (India).

Author information

Authors and Affiliations

Authors

Contributions

SV, N-JKD, AS, RB, DVSR, HS, TR, KV, SKR, LA, LR, MNM, AKS, JS: conducted the experiments, analyzed the data, and interpreted the results. LA, LR, MNM, AKS, JS, AMT, GG, AM: supervised the experiments, analyzed the data, interpreted the results. SV, RB, LA, LR, MNM, AKS, JS, AMT, GG, AM: wrote and edited the manuscript. GG, AM: secured funding.

Corresponding authors

Correspondence to Gareth Griffiths or Amit Misra.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6393 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Dal, NJ.K., Srivastava, A. et al. Inhaled Adjunct Therapy with Second-Line Drug Candidates for Dose Reduction in Chemotherapeutic Regimens for Multi-drug-Resistant Tuberculosis. AAPS PharmSciTech 24, 130 (2023). https://doi.org/10.1208/s12249-023-02585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02585-w

Keywords

Navigation