Skip to main content

Advertisement

Log in

Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study assesses the in vitro release of tenofovir (TFV)-loaded triphosphate (TPP) cross-linked chitosan nanoparticles (NPs) catalyzed by human prostatic acid phosphatase (hPAP) for 24 h. The physico-chemical characterization of the NPs included particle mean diameter (PMD), zeta potential (ζ), percent drug encapsulation efficiency (% EE), Fourier transform infra-red (FTIR) spectroscopy, powder X-ray diffractometry analysis (PXRD), and drug release kinetics. The first-order rate constant (k) and activation energy (Ea) of the cross-link (TPP) are determined by the integrated rate law and Arrhenius’s equations. The hPAP Michaelis–Menten constant (Km) is determined by the Lineweaver–Burk’s equation. The NP’s safety profile is evaluated on vaginal epithelial cells (VK2/E6E7). The lyophilized drug-loaded NPs’ PMD, ζ, and PDI are 149.97 nm, 4.4 mV, and 0.3, respectively. The % EE after lyophilization is 93.7 ± 4.4%. These NPs released drug at faster rate (63% of TFV within 6 h) under the enzyme’s influence. The similarity and difference factors of drug release profiles (absence vs presence of hPAP) are 56.5 and 40.3, respectively. The hPAP’s Km value of 0.019 mM suggests it has a good affinity for TPP at physiological pH ~ 7.4. The enhanced hydrolysis of TPP or degradation of chitosan NPs is fundamentally due to a decrease of TPP’s activation energy by hPAP. In fact, the Ea value is 22.50 ± 3.06 kJ/mol or 16.33 ± 0.62 kJ/mol in the absence or presence of hPAP, respectively. The NPs are non-cytotoxic to the treated vaginal cell line. These hPAP-responsive NPs are promising topical nanomicrobicides for HIV/AIDS prevention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Raw data would be available upon request.

Abbreviations

AM:

Ammonium molybdate tetrahydrate

AT:

Antimonyl tartrate trihydrate

AsA:

Ascorbic acid

Ea :

Activation energy

% EE:

Percent encapsulation efficiency

FTIR:

Fourier transformed infrared

hPAP:

Human prostatic acid phosphatase

Km :

Michaelis constant

MTS:

[3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt

NPs:

Nanoparticles

PMD:

Particle mean diameter

PMS:

Phenazine methosulfate

PXRD:

Powder X-ray diffractometry

SA:

Sodium acetate

TFV:

Tenofovir

TPP:

Triphosphate

Vmax :

Maximal velocity, asymptotic reaction velocity at infinite substrate concentration

References

  1. Hecht R, Bollinger L, Stover J, McGreevey W, Muhib F, Madavo CE, et al. Critical choices in financing the response to the global HIV/AIDS pandemic. Health Aff (Millwood). 2009;28(6):1591–605. https://doi.org/10.1377/hlthaff.28.6.1591.

    Article  PubMed  Google Scholar 

  2. Heron SE, Elahi S. HIV Infection and compromised mucosal immunity: oral manifestations and systemic inflammation. Front Immunol. 2017;8:241. https://doi.org/10.3389/fimmu.2017.00241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopez-Diaz G, Rodriguez-Fernandez A, Dominguez-Martis EM, Mosteiro-Miguens DG, Lopez-Ares D, Novio S. Knowledge, attitudes, and intentions towards HIV pre-exposure prophylaxis among nursing students in Spain. Int J Environ Res Public Health. 2020;17(19). https://doi.org/10.3390/ijerph17197151.

  4. Landers S, Kapadia F. Preexposure prophylaxis: adapting HIV prevention models to achieve worldwide access. Am J Public Health. 2017;107(10):1534–5. https://doi.org/10.2105/AJPH.2017.304035.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Subbarao S, Otten RA, Ramos A, Kim C, Jackson E, Monsour M, et al. Chemoprophylaxis with tenofovir disoproxil fumarate provided partial protection against infection with simian human immunodeficiency virus in macaques given multiple virus challenges. J Infect Dis. 2006;194(7):904–11. https://doi.org/10.1086/507306.

    Article  CAS  PubMed  Google Scholar 

  6. Seyfarth F, Schliemann S, Elsner P, Hipler UC. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm. 2008;353(1–2):139–48. https://doi.org/10.1016/j.ijpharm.2007.11.029.

    Article  CAS  PubMed  Google Scholar 

  7. Ngo AN, Ezoulin MJ, Murowchick JB, Gounev AD, Youan BB. Sodium acetate coated tenofovir-loaded chitosan nanoparticles for improved physico-chemical properties. Pharm Res. 2016;33(2):367–83. https://doi.org/10.1007/s11095-015-1795-y.

    Article  CAS  PubMed  Google Scholar 

  8. Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm. 2012;9(10):2856–62. https://doi.org/10.1021/mp300162j.

    Article  CAS  PubMed  Google Scholar 

  9. Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1–2):57–67. https://doi.org/10.1016/j.ejps.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takka S, Gurel A. Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization. AAPS PharmSciTech. 2010;11(1):460–6. https://doi.org/10.1208/s12249-010-9406-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M, et al. Chitosan-based drug delivery systems for optimization of photodynamic therapy: a review. AAPS PharmSciTech. 2019;20(7):253. https://doi.org/10.1208/s12249-019-1407-y.

    Article  CAS  PubMed  Google Scholar 

  12. Rana R, Rani S, Kumar V, Nakhate KT, Ajazuddin, Gupta U. Sialic acid conjugated chitosan nanoparticles: modulation to target tumour cells and therapeutic opportunities. AAPS PharmSciTech. 2021;23(1):10. https://doi.org/10.1208/s12249-021-02170-z.

  13. Ngo AN, Ezoulin MJ, Youm I, Youan BB. Optimal concentration of 2,2,2-trichloroacetic acid for protein precipitation based on response surface methodology. Journal of analytical & bioanalytical techniques. 2014;5(4). https://doi.org/10.4172/2155-9872.1000198.

  14. Various. CFR-Code of Federal Regulations Title 21, part 182-- Substances Generally Recognized as Safe, Sec. 182.1810 Sodium Triphosphate. US Food and Drug Administration (FDA)2017.

  15. Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, Cesaro A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur J Pharm Sci. 2016;84:37–45. https://doi.org/10.1016/j.ejps.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  16. Van Etten RL, Waymack PP. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase. Arch Biochem Biophys. 1991;288(2):634–45.

  17. Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, Batra SK, et al. Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem. 2010;285(31):23598–606. https://doi.org/10.1074/jbc.M109.098301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kavanagh JP, Bardsley WG. The identity of the acid and alkaline phosphatases of human seminal plasma. J Reprod Fertil. 1979;57(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  19. Cariani L, Thomas L, Brito J, del Castillo JR. Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal Biochem. 2004;324(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  20. Saheki S, Takeda A, Shimazu T. Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal Biochem. 1985;148(2):277–81.

    Article  CAS  PubMed  Google Scholar 

  21. Nollet LL. Chromatograhic analysis of the environment. 2005;93:270.

  22. Prusakiewicz JJ, Ackermann C, Voorman R. Comparison of skin esterase activities from different species. Pharm Res. 2006;23(7):1517–24. https://doi.org/10.1007/s11095-006-0273-y.

    Article  CAS  PubMed  Google Scholar 

  23. Du N, Chen M, Liu Z, Sheng L, Xu H, Chen S. Kinetics and mechanism of jack bean urease inhibition by Hg2+. Chem Cent J. 2012;6(1):154. https://doi.org/10.1186/1752-153X-6-154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Units per Volume Solution Concentration Calculator/http://www.physiologyweb.com/calculators/units_per_volume_solution_concentration_calculator. PhysiologyWeb. 2017.

  25. Bodansky O. The energy of activation of the hydrolysis of sodium beta-glycerophosphate by bone phosphatase at optimal pH. J Biol Chem. 1939;129:197.

    Article  CAS  Google Scholar 

  26. Wazer JRV, Griffith EJ, McCullough JF. Hydrolysis of condensed phosphates. J Am Chem Soc. 1952;74(19):4977–8. https://doi.org/10.1021/ja01139a534.

    Article  Google Scholar 

  27. Atkins P. The rates of chemical reactions". Atkins Chemistry (8th ed) Freeman WH 2006. p. 791–823.

  28. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987; 5(1): 23–36

  29. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  30. Diaz DA, Colgan ST, Langer CS, Bandi NT, Likar MD, Van Alstine L. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? AAPS J. 2016;18(1):15–22. https://doi.org/10.1208/s12248-015-9830-9.

    Article  PubMed  Google Scholar 

  31. Ngo AN, Thomas D, Murowchick J, Ayon NJ, Jaiswal A, Youan BC. Engineering fast dissolving sodium acetate mediated crystalline solid dispersion of docetaxel. Int J Pharm. 2018;545(1–2):329–41. https://doi.org/10.1016/j.ijpharm.2018.04.045.

    Article  CAS  PubMed  Google Scholar 

  32. Szymanska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13(4):1819–46. https://doi.org/10.3390/md13041819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Kasuya K, Koga H, Nogi M, Uetani K. Thermal Conductivity analysis of chitin and deacetylated-chitin nanofiber films under dry conditions. Nanomaterials (Basel). 2021;11(3). https://doi.org/10.3390/nano11030658.

  34. Mark Dannemand JBJ. Simon Furbo, Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol Energy Mater Sol Cells. 2016;145(3):287–95. https://doi.org/10.1016/j.solmat.2015.10.038.

    Article  CAS  Google Scholar 

  35. M. L. Hubera RAP, and D. G. Friend. New international formulation for the thermal conductivity of H2O. Journal of Physical and Chemical Reference Data 41, 033102 (2012). 2012. ; https://doi.org/10.1063/1.4738955.

  36. Elam SK, Tokura I, Saito K, Altenkirch RA. Thermal conductivity of crude oils. Exp Thermal Fluid Sci. 1989;2(1):1–6. https://doi.org/10.1016/0894-1777(89)90043-5.

    Article  CAS  Google Scholar 

  37. Pekarek KJ, Jacob JS, Mathiowitz E. Double-walled polymer microspheres for controlled drug release. Nature. 1994;367(6460):258–60. https://doi.org/10.1038/367258a0.

    Article  CAS  PubMed  Google Scholar 

  38. Wu J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem Rev. 2022;122(12):10821–59. https://doi.org/10.1021/acs.chemrev.2c00097.

    Article  CAS  PubMed  Google Scholar 

  39. Silverstein TP. When both K(m) and V(max) are altered, Is the enzyme inhibited or activated? Biochem Mol Biol Educ. 2019;47(4):446–9. https://doi.org/10.1002/bmb.21235.

    Article  CAS  PubMed  Google Scholar 

  40. Pfeiffer M, Crean RM, Moreira C, Parracino A, Oberdorfer G, Brecker L, et al. Essential functional interplay of the catalytic groups in acid phosphatase. ACS Catal. 2022;12(6):3357–70. https://doi.org/10.1021/acscatal.1c05656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharm Sci. 2017;99:137–46. https://doi.org/10.1016/j.ejps.2016.12.013.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Garcia J, Lehocky M, Humpolicek P, Saha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5(2):43–57. https://doi.org/10.3390/jfb5020043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the award number R01 AI087304, from the National Institute of Allergic and Infectious Diseases (Bethesda, MD, USA).

Author information

Authors and Affiliations

Authors

Contributions

Albert N. Ngo and Bi-Botti Youan (Principal Investigator), were involved in the conception and write-up of the manuscript. The article lists several additional co-authors. Dr. James Murowchick provided XRD analysis of the formulation’s samples at the request of Dr. Ngo and Prof. Youan. Dr Andrea Drew Gounev and Todor K. Gounev provided FTIR analysis at the request of Dr. Ngo and Dr. Youan. We hereby declare that all statements made herein of our own knowledge are true. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bi-Botti Celestin Youan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 464 KB)

Supplementary file2 (TIF 810 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, A.N., Murowchick, J., Gounev, A.D. et al. Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles. AAPS PharmSciTech 24, 143 (2023). https://doi.org/10.1208/s12249-023-02580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02580-1

Keywords

Navigation