Skip to main content

Advertisement

Log in

Plaster Gel Loaded with Silver Nanoparticle-Mediated Ganoderma applanatum: from Fabrication to Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Traditional Asian remedies have mainly employed the macrofungus Ganoderma applanatum, which belongs to the family Ganodermataceae, as a medicinal mushroom due to its high antibacterial and antioxidant activity. Extracts of the fungus can be synthesized into nanoparticles, which are subsequently produced as plaster gels. Synthesized silver nanoparticle-mediated G. applanatum was discovered to have the greatest ability to inhibit bacterial growth in S. epidermidis. When applied to the skin, the prepared plaster gel converted from a gel to a film; thus, both gel and film generation are characteristic of its formulation. The plaster gel that was made was found to be consistent and attractive, and the yellow color had darkened. Its viscosity and pH were appropriate for the application and allowed it to remain on the skin without dripping or reacting with the skin until it dried. A shorter duration for film formation is possible. The film’s tensile was slightly reduced, and it exhibited excellent thermal stability. Decomposition of the generated film occurred at a slower rate, which constrained the polymer chain's ability to move. The semi-crystalline structure was characteristic of the film. It was found that particles were distributed in the film. Rapid release from plaster gel within 4 h was seen, and this was followed by a period of a slowly declining release rate over 12 h. The accurate first-order kinetic used to estimate the release rate of the formulation. The plaster gel demonstrated greater antibacterial activity than the MIC value indicated. The in vivo evaluation was positive and showed no skin irritation. The formulation showed good stability. Therefore, this indicated that the prepared plaster gel is appropriate for topical pharmaceutical delivery and safe for skin application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran L-SP. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arab J Chem. 2019;12(7):1108–20.

    Article  CAS  Google Scholar 

  2. Jeong Y-T, Yang B-K, Jeong S-C, Kim S-M, Song C-H. Ganoderma applanatum: a promising mushroom for antitumor and immunomodulating activity. Phytother Res. 2008;22(5):614–9.

    Article  CAS  PubMed  Google Scholar 

  3. Tsivileva O, Pankratov A, Misin V, Zavyalov A, Volkov V, Tsymbal O, et al. Antioxidant properties of the artist’s conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), upon cultivation with para-substituted phenolic compounds and tea leaf extracts. Int J Med Mushrooms. 2018;20(6):549–60.

    Article  PubMed  Google Scholar 

  4. Elkhateeb W, Daba G, El-Dein A, Sheir D, Fayad W, Shaheen M, et al. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom Ganoderma applanatum. Egypt Pharmaceut J. 2020;19(1):67–73.

    Article  Google Scholar 

  5. Mohammadifar S, Fallahi Gharaghoz S, Asef Shayan MR, Vaziri A. Comparison between antioxidant activity and bioactive compounds of Ganoderma applanatum (Pers.) Pat. and Ganoderma lucidum (Curt.) P. Karst from Iran. Iran J Plant Physiol. 2020;11(1):3417–24.

    Google Scholar 

  6. Osińska-Jaroszuk M, Jaszek M, Mizerska-Dudka M, Błachowicz A, Rejczak TP, Janusz G, et al. Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. Biomed Res Int. 2014;2014: 743812.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vijayan R, Joseph S, Mathew B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol. 2018;12(6):850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pathania D, Kumar S, Thakur P, Chaudhary V, Kaushik A, Varma RS, et al. Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies. Sci Rep. 2022;12(1):11431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdellatif AAH, El-Telbany DFA, Zayed G, Al-Sawahli MM. Hydrogel containing PEG-coated fluconazole nanoparticles with enhanced solubility and antifungal activity. J Pharm Innov. 2019;14(2):112–22.

    Article  Google Scholar 

  10. Gupta R, Rai B. In-silico design of nanoparticles for transdermal drug delivery application. Nanoscale. 2018;10(10):4940–51.

    Article  CAS  PubMed  Google Scholar 

  11. Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup1):115–26.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  13. Gade A, Gaikwad S, Duran N, Rai M. Screening of different species of Phoma for the synthesis of silver nanoparticles. Biotechnol Appl Biochem. 2013;60(5):482–93.

    Article  CAS  PubMed  Google Scholar 

  14. Kathe K, Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J Pharm. 2017;12(6):487–97.

    Google Scholar 

  15. Yang S, Yang Y, Cui S, Feng Z, Du Y, Song Z, et al. Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. Int J Nanomedicine. 2018;13:4987–5002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Šveikauskaitė I, Briedis V. Effect of film-forming polymers on release of naftifine hydrochloride from nail lacquers. Int J Polym Sci. 2017;2017:1476270.

    Article  Google Scholar 

  17. Kim DW, Kim KS, Seo YG, Lee B-J, Park YJ, Youn YS, et al. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int J Pharm. 2015;495(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  18. Jain N, Singh VK, Chauhan S. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J Mech Behav Mater. 2017;26(5–6):213–22.

    Article  CAS  Google Scholar 

  19. Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. 2020;60: 102046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malipeddi VR, Awasthi R, Ghisleni DDM, de Souza Braga M, Kikuchi IS, de Jesus Andreoli Pinto T, et al. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system. Drug Deliv Transl Res. 2017;7(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  21. Monton C, Sampaopan Y, Pichayakorn W, Panrat K, Suksaeree J. Herbal transdermal patches made from optimized polyvinyl alcohol blended film: Herbal extraction process, film properties, and in vitro study. J Drug Deliv Sci Technol. 2022;69.

  22. Suksaeree J, Nawathong N, Anakkawee R, Pichayakorn W. Formulation of polyherbal patches based on polyvinyl alcohol and hydroxypropylmethyl cellulose: characterization and in vitro evaluation. AAPS PharmSciTech. 2017;18(7):2427–36.

    Article  CAS  PubMed  Google Scholar 

  23. Dandapat S, Kumar M, Ranjan R, Sinha MP. Ganoderma applanatum extract mediated synthesis of silver nanoparticles. Braz J Pharm Sci. 2022;58: e19173.

    Article  CAS  Google Scholar 

  24. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020;7(1):105–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–84.

    Article  CAS  PubMed  Google Scholar 

  26. Sampaopan Y, Suksaeree J. Formulation development and pharmaceutical evaluation of Lysiphyllum strychnifolium topical patches for their anti-inflammatory potential. AAPS PharmSciTech. 2022;23(5):116.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics. 2022;11(10):1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quester K, Ávalos Borja M, Castro LE. Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomat Nanobiotechnol. 2016;7:118–25.

    Article  CAS  Google Scholar 

  30. Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011: 270974.

    Article  Google Scholar 

  31. Rahi DK, Madhurika B. Biosynthesis of silver nanoparticles by Ganoderma applanatum, evaluation of their antibacterial and antibiotic activity enhancing potential. World J Pharma Pharm. 2015;4(10):1234–47.

    CAS  Google Scholar 

  32. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B: Biointerf. 2013;108:255–9.

    Article  CAS  Google Scholar 

  33. Thomas R, Janardhanan A, Varghese RT, Mathew EVS, Radhakrishnan EK. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol. 2014;45:1221–7.

    Article  CAS  PubMed  Google Scholar 

  34. Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE. 2019;14(9): e0222322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ullah H, Wilfred CD, Shaharun MS. Synthesis of silver nanoparticles using ionic-liquid-based microwave-assisted extraction from Polygonum minus and photodegradation of methylene blue. J Chin Chem Soc. 2017;64(10):1164–71.

    Article  CAS  Google Scholar 

  36. Zaheer Z, Rafiuddin. Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surf B: Biointerf. 2012;90:48-52.

  37. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Rad Res Appl Sci. 2016;9(3):217–27.

    CAS  Google Scholar 

  38. Hema JA, Malaka R, Muthukumarasamy NP, Sambandam A, Subramanian S, Sevanan M. Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET Nanobiotechnol. 2016;10(5):288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Menéndez-Manjón A, Chichkov BN, Barcikowski S. Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation. J Phys Chem C. 2010;114(6):2499–504.

    Article  Google Scholar 

  40. Ravichandran V, Vasanthi S, Shalini S, Ali Shah SA, Harish R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett. 2016;180:264–7.

    Article  CAS  Google Scholar 

  41. Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. 2015;28(3):501–9.

    Article  CAS  PubMed  Google Scholar 

  42. Maneewattanapinyo P, Pichayakorn W, Monton C, Dangmanee N, Wunnakup T, Suksaeree J. Effect of ionic liquid on silver-nanoparticle-complexed Ganoderma applanatum and its topical film formulation. Pharmaceutics. 2023;15(4):1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.

    Article  CAS  PubMed  Google Scholar 

  44. Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019;554:264–75.

    Article  CAS  PubMed  Google Scholar 

  45. Felton LA. Mechanisms of polymeric film formation. Int J Pharm. 2013;457(2):423–7.

    Article  CAS  PubMed  Google Scholar 

  46. Salih SI, Jabur AR, Mohammed TA. The effect of PVP addition on the mechanical properties of ternary polymer blends. IOP Conf Ser Mater Sci Eng. 2018;433: 012071.

    Article  Google Scholar 

  47. Arbeiter D, Reske T, Teske M, Bajer D, Senz V, Schmitz K-P, et al. Influence of drug incorporation on the physico-chemical properties of poly(l-lactide) implant coating matrices—a systematic study. Polymers. 2021;13(2):292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chandrappa H, Bhajantri RF, Ranjitha, Shwetha, Prarthana N. Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: an efficient UV-shielding material for organisms in terrestrial and aquatic ecosystems. Opt Mater. 2020;109:110204.

    Article  Google Scholar 

  49. Pichayakorn W, Maneewattanapinyo P, Panrat K, Monton C, Suksaeree J. Formulation design of oral strip-films based on PVA/PVP polymer blends for nicotine delivery. J Polym Environ. 2022;30(10):4479–91.

    Article  CAS  Google Scholar 

  50. Gorain B, Choudhury H, Pandey M, Madheswaran T, Kesharwani P, Tekade RK. Drug–excipient interaction and incompatibilities. In: Tekade RK, editor. Dosage Form Design Parameters: Academic Press; 2018. p. 363–402.

  51. Karak N. Vegetable oil-based polymer composites. In: Karak N, editor. Vegetable Oil-Based Polymers: Woodhead Publishing; 2012. p. 247–70.

  52. Suksaeree J, Thuengernthong A, Pongpichayasiri K, Maneewattanapinyo P, Settharaksa S, Pichayakorn W. Formulation and evaluation of matrix type transdermal patch containing silver nanoparticles. J Polym Environ. 2018;26(12):4369–75.

    Article  CAS  Google Scholar 

  53. Singh S, Bharti A, Meena VK. Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J Mater Sci: Mater Electron. 2014;25(9):3747–52.

    CAS  Google Scholar 

  54. Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM. The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers. 2020;12(10):2184.

    Article  CAS  Google Scholar 

  55. Maru S, Gathu L, Mathenge A, Okaru A, Kamau F, Chepkwony H. In vitro drug release studies of metronidazole topical formulations through cellulose membrane. East Cent Afr J Pharm Sci. 2012;15(3):57–62.

    Google Scholar 

  56. Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat. 2016;26(2):213–28.

    Article  CAS  PubMed  Google Scholar 

  57. Li W-R, Sun T-L, Zhou S-L, Ma Y-K, Shi Q-S, Xie X-B, et al. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterior Biodegradation. 2017;123:304–10.

    Article  CAS  Google Scholar 

  58. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The College of Pharmacy and the Research Institute of Rangsit University, Thailand, provided funding for the project (grant number 25/2565). The authors acknowledge Wisawin Hruetrakoon, Kroekkiat Kaewma, Chanchai Suwanlaong, and Jessada Prasomkij as their study assistants. This paper has been proofread in English by the MDPI service, which is financed by Rangsit University's Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

Pattwat Maneewattanapinyo and Chaowalit Monton: Paper conception, research, data processing, data analysis, preparation of figures, discussion of results, and paper writing. Wiwat Pichayakorn, Thaniya Wunnakup, and Nattakan Dangmanee: Research, data analysis, data processing, and discussion of results. Jirapornchai Suksaeree: Advising professor, paper conception, research, data processing, data analysis, preparation of graphs and figures, literature review, discussion of results, paper writing, and critical revision and final approval of the article.

Corresponding author

Correspondence to Jirapornchai Suksaeree.

Ethics declarations

Ethics Approval

The Rangsit University Ethics Committee provided its ethical approval (No. RSUERB2022-122, December 6, 2022) for all operations involving healthy human volunteers. All procedures followed to the ICH-GCP, the CIOMS Guideline, the Belmont Report, and the Declaration of Helsinki.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneewattanapinyo, P., Monton, C., Pichayakorn, W. et al. Plaster Gel Loaded with Silver Nanoparticle-Mediated Ganoderma applanatum: from Fabrication to Evaluation. AAPS PharmSciTech 24, 105 (2023). https://doi.org/10.1208/s12249-023-02566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02566-z

Keywords

Navigation