Skip to main content
Log in

Evaluating the Effect of Microcrystalline Cellulose Variations on Tablet Quality of Natural Plant Product Using a Design of Experiment Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (MCC) of different grades from different manufacturers differ in particulate and powder properties significantly. The choice of MCC is important to the development of a tablet formulation with satisfactory quality. In this study, the effects of five different MCCs (KG 802, Pharmacel 102, MC 302, M 200, and PH 112) that had different compactibility and tablet disintegration on the tablet quality of two different natural plant products (NPPs) were evaluated systematically, including Crataegi Folium ethanol extract (CF-E) and Sarcandrae Herba water extract (SH-W). The result of D-optimal mixture designs demonstrated that KG 802 showed the best ability to improve compression properties and tensile strength, followed by Pharmacel 102, MC 302, and M 200. PH 112 did the weakest. However, MCCs of different grades had no different influence on the disintegration of NPP tablets. Similar results were found in the experiments of the two different NPP powders, suggesting the generalization of the finding. Moreover, KG 802-containing CF-E formulations showed the largest optimum region size, that is, the lowest production risk. The design space sizes of SH-W were hardly sensitive to the change of MCCs, due to the better tabletability. In conclusion, the properties of MCCs could transfer to the high NPP loading (70%) formulations, leading to the variations on the compression properties and tablet quality. The poorer the tabletability of NPP, the more obvious the variation. The result is promising for the use of MCC and the manufacturing of high drug-loading NPP tablets by direct compression.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

MCC:

Microcrystalline cellulose

NPP:

Natural plant product

CF-E:

Crataegi Folium Ethanol extract

SH-W:

Sarcandrae Herba Water extract

FDA:

Food and Drug Administration

DC:

Direct compression

TS, σ:

Tensile strength

DT:

Disintegration time

ρ b :

Bulk density

ρ t :

Tapped density

ρ true :

True density

ε:

Porosity

D50:

Median particle size

LAC:

Spray-dried monohydrate lactose

DCPA:

Dicalcium phosphate anhydrate

CCS:

Croscarmellose sodium

MgSt:

Magnesium stearate

Py:

Yield pressure

R2 :

Coefficient of determination

Eq:

Equation

References

  1. Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: from ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res. 2021;35(1):223–45. https://doi.org/10.1002/ptr.6821.

    Article  PubMed  Google Scholar 

  2. Xiong ZW, Yang B, Zhao YX, Ning RX, Wang B, Lu M, et al. A new direct compression mechanism of structural transition in Poria cocos extract composite particles. Int J Pharm. 2022;623:121913. https://doi.org/10.1016/j.ijpharm.2022.121913.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res. 2021;35(9):4943–56. https://doi.org/10.1002/ptr.7123.

    Article  PubMed  Google Scholar 

  4. Chi X, Wang S, Baloch Z, Zhang H, Li X, Zhang Z, et al. Research progress on classical traditional Chinese medicine formula Lily Bulb and Rehmannia Decoction in the treatment of depression. Biomed Pharmacother. 2019;112:108616. https://doi.org/10.1016/j.biopha.2019.108616.

    Article  PubMed  Google Scholar 

  5. CDER: Novel Drug Approvals for 2019. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019 (2019). Accessed July 2022.

  6. CDER: Novel Drug Approvals for 2020. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2020 (2020). Accessed July 2022.

  7. CDER: Novel Drug Approvals for 2021. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021 (2021). Accessed July 2022.

  8. Zhang Y, Li J, Gao Y, Wu F, Hong Y, Shen L, et al. Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: Comparison of microcrystalline cellulose and two nano-silicas. Int J Pharm. 2022;622:121837. https://doi.org/10.1016/j.ijpharm.2022.121837.

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Wu F, Zhao LJ, Lin X, Shen L, Feng Y. Evaluation of fundamental and functional properties of natural plant product powders for direct compaction based on multivariate statistical analysis. Adv Powder Technol. 2018;29(11):2881–94. https://doi.org/10.1016/j.apt.2018.08.009.

    Article  CAS  Google Scholar 

  10. Yu YT, Zhao LJ, Lin X, Wang YJ, Du RF, Feng Y. Research on the powder classification and the key parameters affecting tablet qualities for direct compaction based on powder functional properties. Adv Powder Technol. 2021;32(2):565–81. https://doi.org/10.1016/j.apt.2021.01.002.

    Article  CAS  Google Scholar 

  11. Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym. 2022;278:118968. https://doi.org/10.1016/j.carbpol.2021.118968.

    Article  CAS  PubMed  Google Scholar 

  12. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment–a review. Int J Pharm. 2014;473(1–2):64–72. https://doi.org/10.1016/j.ijpharm.2014.06.055.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Wang Z, Xiu H, Zhao X, Ma F, Liu L, et al. Correlation between the powder characteristics and particle morphology of microcrystalline cellulose (MCC) and its tablet application performance. Powder Technology. 2022;399:117194. https://doi.org/10.1016/j.powtec.2022.117194.

    Article  CAS  Google Scholar 

  14. Wang C, Sun CC. The efficient development of a sildenafil orally disintegrating tablet using a material sparing and expedited approach. Int J Pharm. 2020;589:119816. https://doi.org/10.1016/j.ijpharm.2020.119816.

    Article  CAS  PubMed  Google Scholar 

  15. Hsein H, Garrait G, Tamani F, Beyssac E, Hoffart V. Denatured whey protein powder as a new matrix excipient: design and evaluation of mucoadhesive tablets for sustained drug release applications. Pharm Res. 2017;34(2):365–77. https://doi.org/10.1007/s11095-016-2067-1.

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura S, Nakagawa M, Tanaka C, Yuasa H, Sakamoto T. Utility of microcrystalline cellulose to prevent drug segregation in direct powder compression. J Drug Delivery Sci Technol. 2019;52:386–92. https://doi.org/10.1016/j.jddst.2019.05.017.

    Article  CAS  Google Scholar 

  17. Nofrerias I, Nardi A, Suñé-Pou M, Suñé-Negre JM, García-Montoya E, Pérez-Lozano P, et al. Comparison between microcrystalline celluloses of different grades made by four manufacturers using the SeDeM diagram expert system as a pharmaceutical characterization tool. Powder Technol. 2019;342:780–8. https://doi.org/10.1016/j.powtec.2018.10.048.

    Article  CAS  Google Scholar 

  18. Thoorens G, Krier F, Rozet E, Carlin B, Evrard B. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability. Int J Pharm. 2015;490(1–2):47–54. https://doi.org/10.1016/j.ijpharm.2015.05.026.

    Article  CAS  PubMed  Google Scholar 

  19. Queiroz ALP, Wood B, Faisal W, Farag F, Garvie-Cook H, Glennon B, et al. Application of percolation threshold to disintegration and dissolution of ibuprofen tablets with different microcrystalline cellulose grades. Int J Pharm. 2020;589:119838. https://doi.org/10.1016/j.ijpharm.2020.119838.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi Y, Shirotori K, Kosugi A, Kumada S, Leong KH, Okada K, et al. A Precise prediction method for the properties of API-Containing tablets based on data from placebo tablets. Pharmaceutics. 2020;12(7):601. https://doi.org/10.3390/pharmaceutics12070601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo YP, Yang H, Wang YL, Chen XX, Zhang K, Wang YL, et al. Determination of flavonoids compounds of three species and different harvesting periods in Crataegi folium based on LC-MS/MS. Molecules. 2021;26(6). https://doi.org/10.3390/molecules26061602.

  22. Dong P, Pan L, Zhang X, Zhang W, Wang X, Jiang M, et al. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice. J Ethnopharmacol. 2017;198:479–88. https://doi.org/10.1016/j.jep.2017.01.040.

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Wang H, Zhang J, Luo J, Peng C, Tong X, et al. Molecular mechanism of Crataegi folium and Alisma rhizoma in the treatment of dyslipidemia based on network pharmacology and molecular docking. Evid Based Complement Alternat Med. 2022;2022:4891370. https://doi.org/10.1155/2022/4891370.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu X, Jiang Y, Zheng Q, Zhang A, Shi L, Xia L, et al. Apoptosis of platelets inhibited by herba sarcandrae extract through the mitochondria pathway. Evidence-Based Complement Alternat Med. 2018;2018:1956902. https://doi.org/10.1155/2018/1956902.

    Article  Google Scholar 

  25. Han L, Han Y. Network pharmacology-based study on the active component and mechanism of the anti-gastric-cancer effect of Herba Sarcandrae. J Healthcare Eng. 2021;2021:3001131. https://doi.org/10.1155/2021/3001131.

    Article  Google Scholar 

  26. Yiling J, Qin Z, Aiping Z, Lele C, Lemin X, Meihong L. Flavone from Zhongjiefeng (Herba Sarcandrae Glabrae) inhibits platelet apoptosis in immune-induced bone marrow failure through mitochondrial pathway. J Tradit Chin Med. 2017;37(5):643–9. https://doi.org/10.1016/S0254-6272(17)30318-7.

    Article  Google Scholar 

  27. Al Hagbani T, Altomare C, Salawi A, Nazzal S. D-optimal mixture design: Formulation development, mechanical characterization, and optimization of curcumin chewing gums using oppanol(R) B 12 elastomer as a gum-base. Int J Pharm. 2018;553(1–2):210–9. https://doi.org/10.1016/j.ijpharm.2018.10.047.

    Article  CAS  PubMed  Google Scholar 

  28. Xu GL, Li MH, Lu P. Experimental investigation on flow properties of different biomass and torrefied biomass powders. Biomass Bioenerg. 2019;122:63–75. https://doi.org/10.1016/j.biombioe.2019.01.016.

    Article  CAS  Google Scholar 

  29. Zhang Y, Li Y, Wu F, Hong Y, Shen L, Lin X, et al. Texture and surface feature-mediated striking improvements on multiple direct compaction properties of Zingiberis Rhizoma extracted powder by coprocessing with nano-silica. Int J Pharm. 2021;603:120703. https://doi.org/10.1016/j.ijpharm.2021.120703.

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y, Zhao L, Lin X, Wang Y, Feng Y. A model to simultaneously evaluate the compressibility and compactibility of a powder based on the compression ratio. Int J Pharm. 2020;577:119023. https://doi.org/10.1016/j.ijpharm.2020.119023.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H, Yu Y, Ni N, Zhao L, Lin X, Wang Y, et al. A new parameter for characterization of tablet friability based on a systematical study of five excipients. Int J Pharm. 2022;611:121339. https://doi.org/10.1016/j.ijpharm.2021.121339.

    Article  CAS  PubMed  Google Scholar 

  32. Heckel W. Density-pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221(4):671–5.

    CAS  Google Scholar 

  33. Klevan I, Nordstrom J, Bauer-Brandl A, Alderborn G. On the physical interpretation of the initial bending of a Shapiro-Konopicky-Heckel compression profile. Eur J Pharm Biopharm. 2009;71(2):395–401. https://doi.org/10.1016/j.ejpb.2008.09.014.

    Article  CAS  PubMed  Google Scholar 

  34. Kawakita K, Lüdde K-H. Some considerations on powder compression equations. Powder Technol. 1971;4(2):61–8. https://doi.org/10.1016/0032-5910(71)80001-3.

    Article  Google Scholar 

  35. Zhao J, Burt HM, Miller RA. The Gurnham equation in characterizing the compressibility of pharmaceutical materials. Int J Pharm. 2006;317(2):109–13. https://doi.org/10.1016/j.ijpharm.2006.02.054.

    Article  CAS  PubMed  Google Scholar 

  36. Sun CC. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm. 2008;346(1):93–101. https://doi.org/10.1016/j.ijpharm.2007.06.017.

    Article  CAS  PubMed  Google Scholar 

  37. Berardi A, Bisharat L, Quodbach J, Abdel Rahim S, Perinelli DR, Cespi M. Advancing the understanding of the tablet disintegration phenomenon - an update on recent studies. Int J Pharm. 2021;598:120390. https://doi.org/10.1016/j.ijpharm.2021.120390.

    Article  CAS  PubMed  Google Scholar 

  38. Yin XZ, Maharjan A, Fang LW, Wu L, Zhang L, Shakya S, et al. Cavities spatial distribution confined by microcrystalline cellulose particles determines tablet disintegration patterns. Powder Technol. 2018;339:717–27. https://doi.org/10.1016/j.powtec.2018.08.060.

    Article  CAS  Google Scholar 

  39. Iyer RM, Hegde S, Dinunzio J, Singhal D, Malick W. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Pharm Dev Technol. 2014;19(5):583–92. https://doi.org/10.3109/10837450.2013.813541.

    Article  CAS  PubMed  Google Scholar 

  40. De Boer AH, Vromans H, Lerk CF, Bolhuis GK, Kussendrager KD, Bosch H. Studies on tableting properties of lactose. Part III. The consolidation behaviour of sieve fractions of crystalline alpha-lactose monohydrate. Pharm Weekbl Sci. 1986;8(2):145–50. https://doi.org/10.1007/BF02086149.

    Article  PubMed  Google Scholar 

  41. Kawakita K, Tsutsumi Y. A Comparison of equations for powder compression. Bull Chem Soc Jpn. 1966;39(7):1364–8. https://doi.org/10.1246/bcsj.39.1364.

    Article  CAS  Google Scholar 

  42. Vreeman G, Sun CC. Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter. Int J Pharm X. 2021;3:100094. https://doi.org/10.1016/j.ijpx.2021.100094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Odeku OA. The Compaction of pharmaceutical powders. Pharmaceutical Reviews. 2007;5(2).

  44. Solomon S, Ziaee A, Giraudeau L, O’Reilly E, Walker G, Albadarin AB. Particle engineering of excipients: a mechanistic investigation into the compaction properties of lignin and [co]-spray dried lignin. Int J Pharm. 2019;563:237–48. https://doi.org/10.1016/j.ijpharm.2019.03.061.

    Article  CAS  PubMed  Google Scholar 

  45. Soundaranathan M, Vivattanaseth P, Walsh E, Pitt K, Johnston B, Markl D. Quantification of swelling characteristics of pharmaceutical particles. Int J Pharm. 2020;590:119903. https://doi.org/10.1016/j.ijpharm.2020.119903.

    Article  CAS  PubMed  Google Scholar 

  46. Bauhuber S, Warnke G, Berardi A. Disintegrant selection in hydrophobic tablet formulations. J Pharm Sci. 2021;110(5):2028–37. https://doi.org/10.1016/j.xphs.2020.11.002.

    Article  CAS  PubMed  Google Scholar 

  47. Alyami H, Dahmash E, Bowen J, Mohammed AR. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLoS One. 2017;12(6):e0178772. https://doi.org/10.1371/journal.pone.0178772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bafail R, Rawas-Qalaji M, Rawas-Qalaji M, Aodah A. Effect of the filler grade on the characteristics and the sublingual permeability of atropine sulfate fast disintegrating sublingual tablets. Drug Dev Ind Pharm. 2019;45(10):1617–23. https://doi.org/10.1080/03639045.2019.1648499.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored by the National Natural Science Foundation of China (82003958); The Natural Science Foundation project of Shanghai (23ZR1463500); National Drug Standard Improvement Project 2022 (2022Y26); The Budgetary project of Shanghai University of Traditional Chinese Medicine (2020LK022).

Author information

Authors and Affiliations

Authors

Contributions

Haiyue Zhao: methodology, data curation, writing—original draft, investigation. Chuting Shi: methodology, investigation. Zhenda Liu: software, investigation. Lijie Zhao: conceptualization, methodology, writing—review & editing, supervision, funding acquisition. Lan Shen: conceptualization, writing—review & editing, resources, supervision, funding acquisition.

Corresponding authors

Correspondence to Lijie Zhao or Lan Shen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Shi, C., Liu, Z. et al. Evaluating the Effect of Microcrystalline Cellulose Variations on Tablet Quality of Natural Plant Product Using a Design of Experiment Approach. AAPS PharmSciTech 24, 113 (2023). https://doi.org/10.1208/s12249-023-02556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02556-1

Keywords

Navigation