Skip to main content

Advertisement

Log in

Loteprednol-Loaded Nanoformulations for Corneal Delivery by Quality-by-Design Concepts: Optimization, Characterization, and Anti-inflammatory Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Loteprednol etabonate (LE) is a topical corticosteroid that uses inflammatory conditions of the eye. It has a low ocular bioavailability and side effects such as corneal disorder, eye discharge, and ocular discomfort. Therefore, it was decided to select the delivery systems, which are solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE). Design of experiments (DoE) of SLN, NLC, and NE formulations were formulated by using the quality by design (QbD) approach. Precirol® ATO 5 and oleic acid were used as solid and liquid lipids, respectively, in SLN, NLC, and NE formulations. Physiochemical characterization was performed on the formulations. The optimized formulations’ inflammatory effects have been appraised on human corneal epithelial cells employing the ELISA test. Physicochemical characterization studies and inflammatory effects were appraised. The sizes of optimized formulations of SLN, NLC, and NE were 86.19 nm, 82.38 nm, and 126.35 nm, respectively, with minimum polydispersity. The release behavior of the formulations is composed of both diffusion and erosion. ELISA test results proved that the formulations significantly reduced IL-1 and IL-6 levels (p < 0.05). D-optimal mixture experimental design allowed us to develop the most precise formulations of SLN, NLC, and NE. Furthermore, the optimized formulations could be promising candidates for treating an inflammation-based corneal disease of the eye.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The corresponding author will provide the datasets created during and/or analyzed during the current investigation upon reasonable request.

References

  1. Ericson-Neilsen W, Kaye AD. Steroids: pharmacology, complications, and practice delivery issues. Ochsner J. 2014;14(2):203–7.

    PubMed  PubMed Central  Google Scholar 

  2. Pan Q, Xu Q, Boylan NJ, Lamb NW, Emmert DG, Yang JC, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holland EJ, Fingeret M, Mah FS. Use of topical steroids in conjunctivitis: a review of the evidence. Cornea. 2019;38(8):1062–7.

    Article  PubMed  Google Scholar 

  4. Shimazaki J, Iseda A, Satake Y, Shimazaki-Den S. Efficacy and safety of long-term corticosteroid eye drops after penetrating keratoplasty: a prospective, randomized, clinical trial. Ophthalmology. 2012;119(4):668–73.

    Article  PubMed  Google Scholar 

  5. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Comstock TL, Sheppard JD. Loteprednol etabonate for inflammatory conditions of the anterior segment of the eye: twenty years of clinical experience with a retrometabolically designed corticosteroid. Expert Opin Pharmacother. 2018;19(4):337–53.

    Article  CAS  PubMed  Google Scholar 

  7. Fong R, Cavet ME, DeCory HH, Vittitow JL. Loteprednol etabonate (submicron) ophthalmic gel 0.38% dosed three times daily following cataract surgery: integrated analysis of two phase III clinical studies. Clin Ophthalmol. 2019;13:1427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy R, Kim SJ. Critical appraisal of ophthalmic ketorolac in treatment of pain and inflammation following cataract surgery. Clin Ophthalmol. 2011;5:751–8.

    PubMed  PubMed Central  Google Scholar 

  9. Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35.

    Article  CAS  PubMed  Google Scholar 

  10. Özdemir S, Çelik B, Üner M. Properties and therapeutic potential of solid lipid nanoparticles and nanostructured lipid carriers as promising colloidal drug delivery systems. Materials for Biomedical Engineering: Elsevier; 2019. p. 457–505.

    Google Scholar 

  11. Uner M, Damgali S, Ozdemir S, Celik B. Therapeutic potential of drug delivery by means of lipid nanoparticles: reality or illusion? Curr Pharm Des. 2017;23(43):6573–91.

    Article  CAS  Google Scholar 

  12. Müller LJ, Pels E, Vrensen GF. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol. 2001;85(4):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride–water phases. Int J Pharm. 2002;244(1–2):33–43.

    Article  CAS  PubMed  Google Scholar 

  14. Gönüllü Ü, Üner M, Yener G, Fatma Karaman E, Aydoğmuş Z. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharmaceutica. 2015;65(1):1–13.

    Article  PubMed  Google Scholar 

  15. Deli G, Hatziantoniou S, Nikas Y, Demetzos C. Solid lipid nanoparticles and nanoemulsions containing ceramides: preparation and physicochemical characterization. J Liposome Res. 2009;19(3):180–8.

    Article  CAS  PubMed  Google Scholar 

  16. Özdemir S, Çelik B, Acar ET, Duman G, Üner M. Eplerenone nanoemulsions for treatment of hypertension. Part I: Experimental design for optimization of formulations and physical characterization. J Drug Deliv Sci Technol. 2018;45:357–66.

    Article  Google Scholar 

  17. Dhoot AS, Fernandes GJ, Naha A, Rathnanand M, Kumar L. Design of experiments in pharmaceutical development. Pharm Chem J. 2019;53(8):730–5.

    Article  CAS  Google Scholar 

  18. Murray PM, Bellany F, Benhamou L, Bučar D-K, Tabor AB, Sheppard TD. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org Biomol Chem. 2016;14(8):2373–84.

    Article  CAS  PubMed  Google Scholar 

  19. Souza J, Alves J, Damiani J, Silva M, editors. Design of experiments: its importance in the efficient project management. Proceedings of the 22nd International Conference on Production Research, Iguassu Falls, Brazil. 2013;22:1–5.

  20. López ES, Machado AL, Vidal LB, González-Pizarro R, Silva AD, Souto EB. Lipid nanoparticles as carriers for the treatment of neurodegeneration associated with Alzheimer’s disease and glaucoma: present and future challenges. Curr Pharm Des. 2020;26(12):1235–50.

    Article  PubMed  Google Scholar 

  21. Badawi N, El-Say K, Attia D, El-Nabarawi M, Elmazar M, Teaima M. Development of pomegranate extract-loaded solid lipid nanoparticles: quality by design approach to screen the variables affecting the quality attributes and characterization. ACS Omega. 2020;5(34):21712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uner B, Ozdemir S, Tas C, Ozsoy Y, Uner M. Development of lipid nanoparticles for transdermal loteprednol etabonate delivery. J Microencapsul. 2022;39(4):327–40.

    Article  CAS  PubMed  Google Scholar 

  23. Guideline: validation of analytical procedures: textand methodology Q2 (R1). (2005).

  24. Chantaburanan T, Teeranachaideekul V, Chantasart D, Jintapattanakit A, Junyaprasert VB. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J Colloid Interface Sci. 2017;504:247–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hu F, Hong Y, Yuan H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm. 2004;273(1–2):29–35.

    Article  CAS  PubMed  Google Scholar 

  26. Wagh VD, Apar DU. Cyclosporine a loaded PLGA nanoparticles for dry eye disease: in vitro characterization studies. J Nanotechnol. 2014;683153:1–10.

    Article  Google Scholar 

  27. Han YK, Segall AI. A validated specific stability-indicating RP-HPLC assay method for the determination of loteprednol etabonate in eye drops. J Chromatogr Sci. 2015;53(5):761–6.

    Article  CAS  PubMed  Google Scholar 

  28. Jin L, Wu J, Yuan G, Chen T. In vitro study of the inflammatory cells response to biodegradable Mg-based alloy extract. PLoS ONE. 2018;13(3).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Quantikine®ELISA, For the quantitative determination of human interleukin I (IL-I) and interleukin 6 (IL-6) concentrations in cell culture supernates, serum, and plasma. [Internet]. 14 October 2021. Available from: https://www.bio-techne.com/datasheet-pdf?src=rnd&pdf=d6050.pdf

  30. Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. Handbook of nanoparticles: Springer; 2016. p. 117–41.

    Google Scholar 

  31. Hirani A, Lee W, Y, Pathak Y, Sutariya V. Efficacy of loteprednol etabonate drug delivery system in suppression of in vitro retinal pigment epithelium activation. Pharmaceutical Nanotechnology. 2014;2(4):208–16.

    Article  CAS  Google Scholar 

  32. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm. 1998;168(2):221–9.

    Article  CAS  Google Scholar 

  33. Hamdani J, Moës AJ, Amighi K. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm. 2003;260(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  34. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.

    Article  CAS  PubMed  Google Scholar 

  35. Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf, B. 2011;88(1):483–9.

    Article  CAS  Google Scholar 

  36. Toameh D. Development of in vitro biocompatibility models of the ocular surface: University of Waterloo; 2020.

  37. Souto E, Wissing S, Barbosa C, Müller R. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  38. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1–2):241–5.

    Article  CAS  PubMed  Google Scholar 

  39. Qin Q, Luo D, Shi Y, Zhao Q, Chen Y, Wu J, et al. CD25 siRNA induces Treg/Th1 cytokine expression in rat corneal transplantation models. Exp Eye Res. 2016;151:134–41.

    Article  CAS  PubMed  Google Scholar 

  40. Tsai I-L, Tsai C-Y, Kuo L-L, Woung L-C, Ku R-Y, Cheng Y-H. PLGA nanoparticles containing Lingzhi extracts rescue corneal epithelial cells from oxidative damage. Exp Eye Res. 2021;206.

    Article  CAS  PubMed  Google Scholar 

  41. Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Delivery. 2010;17(7):467–89.

    Article  CAS  PubMed  Google Scholar 

  42. Başaran E, Demirel M, Sırmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010;27(1):37–47.

    Article  PubMed  Google Scholar 

  43. Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–19.

    Article  CAS  PubMed  Google Scholar 

  44. Rathod VR, Shah DA, Dave RH. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables. Drug Dev Ind Pharm. 2020;46(3):443–55.

    Article  CAS  PubMed  Google Scholar 

  45. Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm. 2022;172:144–56.

    Article  PubMed  Google Scholar 

  46. Noble S, Goa KL. Loteprednol etabonate. BioDrugs. 1998;10(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  47. Albinus M, Amschler G, Amschler U, von Angerer E, Barthel W, Bauer A, et al. T. In: Albinus M, Amschler G, Amschler U, von Angerer E, Barthel W, Bauer A, et al., editors. Hagers Handbuch der Pharmazeutischen Praxis. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994. p. 765-1129.

  48. Clares B, Calpena AC, Parra A, Abrego G, Alvarado H, Fangueiro JF, et al. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm. 2014;473(1–2):591–8.

    Article  CAS  PubMed  Google Scholar 

  49. Guzniczak E, Jimenez M, Irwin M, Otto O, Willoughby N, Bridle H. Impact of poloxamer 188 (Pluronic F-68) additive on cell mechanical properties, quantification by real-time deformability cytometry. Biomicrofluidics. 2018;12(4).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Beekes M, Lasch P, Naumann D. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Vet Microbiol. 2007;123(4):305–19.

    Article  CAS  PubMed  Google Scholar 

  51. Mansbridge J, Morhenn V. Tape stripping: a novel noninvasive method using RNA sequences for diagnosing ocular surface diseases of the eye and eyelid. Investigative Ophthalmology & Visual Science. 2020;61(7):392.

    Google Scholar 

  52. Shiyan S, Suryani RP, Mulyani LN, Pratiwi G. Stability study of super saturable catechin-self nano emulsifying drug delivery system as antidiabetic therapy. Biointerface Res Appl Chem. 2022;12:5811–20.

    CAS  Google Scholar 

  53. Sheppard JD, Comstock TL, Cavet ME. Impact of the topical ophthalmic corticosteroid loteprednol etabonate on intraocular pressure. Adv Ther. 2016;33(4):532–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bodor N, Loftsson T, Wu W-M. Metabolism, distribution, and transdermal permeation of a soft corticosteroid, loteprednol etabonate. Pharm Res. 1992;9(10):1275–8.

    Article  CAS  PubMed  Google Scholar 

  55. Uner B, Ozdemir S, Yildirim E, Yaba A, Ozsoy Y, Uner M. Loteprednol loaded nanoformulations for corneal delivery: Ex-vivo permeation study, ocular safety assessment and stability studies. J Drug Deliv Sci Technol. 2023;81:1–10.

    Google Scholar 

  56. Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327–31.

    CAS  PubMed  Google Scholar 

  57. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127–48.

    Article  CAS  PubMed  Google Scholar 

  58. Venkateswaran N, Bian Y, Gupta PK. Practical guidance for the use of loteprednol etabonate ophthalmic suspension 0.25% in the management of dry eye disease. Clin Ophthalmol. 2022;16:349–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would not neglect to thank both Yeditepe University Faculty of Genetic and Bioengineering and Yeditepe University Faculty of Chemical Engineering for their unconditional permission analyses throughout the project period. Especially, authors would like to express their deepest gratitude in-person to Dr. Ebru Turkoz Acar, Dr. Manolya Hatipoglu, Dr. Cem Levent Altan, and Beyza Abisoglu.

Author information

Authors and Affiliations

Authors

Contributions

Burcu Uner contributed to the investigation, software, methodology, and editing and writing of original manuscript. Samet Ozdemir contributed to the investigation, validation, and review. Yildiz Ozsoy, Melike Uner, and Cetin Tas contributed to the supervision, writing, and review.

Corresponding author

Correspondence to Burcu Uner.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uner, B., Ozdemir, S., Tas, C. et al. Loteprednol-Loaded Nanoformulations for Corneal Delivery by Quality-by-Design Concepts: Optimization, Characterization, and Anti-inflammatory Activity. AAPS PharmSciTech 24, 92 (2023). https://doi.org/10.1208/s12249-023-02551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02551-6

Keywords

Navigation