Skip to main content
Log in

Self-Double-Emulsifying Drug Delivery System Enteric-Coated Capsules: A Novel Approach to Improve Oral Bioavailability and Anti-inflammatory Activity of Panax notoginseng Saponins

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this work, self-double-emulsifying drug delivery system enteric-coated capsules (PNS-SDE-ECC) were used to enhance the oral bioavailability and anti-inflammatory effects of Panax notoginseng saponins (PNS), which are rapidly biodegradable, poorly membrane permeable, and highly water-soluble compounds. The PNS-SDEDDS formulated by a modified two-step method spontaneously emulsified to W/O/W double emulsions in the outer aqueous solution, which significantly promoted the absorption of PNS in the intestinal tract. The release study revealed that PNS-SDE-ECC exhibited sustained release of PNS within 24 h and the stability study indicated that PNS-SDE-ECC were stable at room temperature for up to 3 months. Furthermore, compared to PNS gastric capsules, the relative bioavailability of NGR1, GRg1, GRe, GRb1, and GRd in PNS-SDE-ECC was increased by 4.83, 10.78, 9.25, 3.58, and 4.63 times, respectively. More importantly, PNS-SDE-ECC significantly reduced OXZ-induced inflammatory damage in the colon by regulating the expression of TNF-α, IL-4, IL-13, and MPO cytokines. Overall, the prepared PNS-SDE-ECC may serve as a viable vehicle for increasing the oral bioavailability of PNS and its anti-inflammatory action on ulcerative colitis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. Ann Transl Med. 2020;8:1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao H, Han Z, Li G, Zhang S, Luo Y. Therapeutic potential and cellular mechanisms of panax notoginseng on prevention of aging and cell senescence-associated diseases. Aging Dis. 2017;8:721–39.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang X, Xiong X, Wang H, Wang J. Protective effects of panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid Based Complement Alternat Med. 2014;2014: 204840.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs. 2014;23:523–39.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang ZJ, Chen LJ, Cui XM, Zhang YM, Hu YP, Wang CX, et al. Identification of anti-inflammatory components of raw and steamed Panax notoginseng root by analyses of spectrum-effect relationship. RSC Adv. 2019;9:17950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Wang RF, Zhou Y, Hu HJ, Yang YB, Yang L, et al. Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities. J Ginseng Res. 2019;43:377–84.

    Article  PubMed  Google Scholar 

  7. Liu MW, Huang YQ, Qu YP, Wang DM, Tang DY, Fang TW, et al. Protective effects of Panax notoginseng saponins in a rat model of severe acute pancreatitis occur through regulation of inflammatory pathway signaling by upregulation of miR-181b. Int J Immuopath Ph. 2018;32:1–19.

    Google Scholar 

  8. He Y, Li H, Zheng X, Yuan M, Yang R, Yuan M, et al. Preparation, in vivo and in vitro release of polyethylene glycol monomethyl ether-polymandelic acid microspheres loaded Panax notoginseng saponins. Molecules. 2019;24:2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res. 2018;42:361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu Q, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panaxnotoginseng in rats. J Ethnopharmacol. 2003;84:187–92.

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Wang G, Sun J, Hao H, Xiong Y, Yan B, et al. Pharmacokinetic and absolute bioavailability study of total Panax notoginsenoside, a typical multiple constituent traditional chinese medicine (TCM) in rats. Biol Pharm Bull. 2007;30:847–51.

    Article  CAS  PubMed  Google Scholar 

  12. Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, et al. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal. 2010;51:278–83.

    Article  CAS  PubMed  Google Scholar 

  13. Feng L, Hu CJ, Yu LY. Pharmacokinetics of ginsenosides Rg1 and its metabolites in rats. Acta Pharm Sin. 2010;45:636–40.

    CAS  Google Scholar 

  14. Fu W, Liang Y, Xie Z, Wu H, Zhang Z, Lv H. Preparation and evaluation of lecithin/zein hybrid nanoparticles for the oral delivery of Panax notoginseng saponins. Eur J Pharm Sci. 2021;164: 105882.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Han XZ, Li X, Luo Y, Zhao HP, Yang M, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7:4299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu ZD, Zhang Q, Ding LL, Li CH, Yin ZP, Yan GQ, et al. Preparation procedure and pharmacokinetic study of water-in-oil nanoemulsion of Panax notoginseng saponins for improving the oral bioavailability. Curr Drug Deliv. 2016;13:600–10.

    Article  CAS  PubMed  Google Scholar 

  17. Hu C, Wang Q, Zhao G, Yao W, Xia Q. Improved oral absorption of (−)-epigallocatechin-3-gallate via self-double-emulsifying solid formulation. Eur J Lipid Sci Technol. 2015;118: 111524.

    Google Scholar 

  18. Wang Q, Hu C, Qian A, Liu T, Zhang H, Zhang Y, et al. Enhanced oral bioavailability of quercetin by a new non-aqueous self-double-emulsifying drug delivery system. Eur J Lipid Sci Technol. 2016;119:1600167.

    Article  Google Scholar 

  19. Wang X, Jiang S, Wang X, Liao J, Yin Z. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system. Asian J Pharm Sci. 2015;10:386–95.

    Article  Google Scholar 

  20. Qi X, Wang L, Zhu J, Hu Z, Zhang J. Self-double-emulsifying drug delivery system (SDEDDS): a new way for oral delivery of drugs with high solubility and low permeability. Int J Pharm. 2011;409:245–51.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharjee A, Verma S, Verma PRP, Singh SK, Chakraborty A. Fabrication of liquid and solid self-double emulsifying drug delivery system of atenolol by response surface methodology. J Drug Deliv Sci Tec. 2017;41:45–57.

    Article  CAS  Google Scholar 

  22. Lv LZ, Tong CQ, Lv Q, Tang XJ, Li LM, Fang QX, et al. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies. Int J Nanomedicine. 2021;7:4099–107.

  23. Chen L, Han X, Xu X, Zhang Q, Zeng Y, Su Q, et al. Optimization and evaluation of the thermosensitive in situ and adhesive gel for rectal delivery of budesonide. AAPS PharmSciTech. 2020;21:97.

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal A, Sabol T, Vaziri H. Update on the use of biologic therapy in ulcerative colitis. Curr Treat Options Gastroenterol. 2017;15:155–67.

    Article  PubMed  Google Scholar 

  25. Burri E, Maillard MH, Schoepfer AM, Seibold F, Van Assche G, Rivière P, et al. Treatment algorithm for mild and moderate-to-severe ulcerative colitis: an update. Digestion. 2020;101:2–15.

    Article  CAS  PubMed  Google Scholar 

  26. Anindya AL, Oktaviani RD, Praevina BR, Damayanti S, Kurniati NF, Riani C, et al. Xylan from pineapple stem waste: a potential biopolymer for colonic targeting of anti-inflammatory agent mesalamine. AAPS PharmSciTech. 2019;20:112.

    Article  CAS  PubMed  Google Scholar 

  27. Yu C, Li C, Pan H, Li T, He S. Preparation of 2-methoxyestradiol self-emulsified drug delivery system and the effect on combination therapy with doxorubicin against MCF-7/ADM cells. AAPS PharmSciTech. 2022;23(5):147.

    Article  CAS  PubMed  Google Scholar 

  28. Chidambaram N, Burgess DJ. A novel in vitro release method for submicron sized dispersed systems. AAPS PharmSciTech. 1999;1(3):E11.

    CAS  Google Scholar 

  29. Zhang LH, Cao N, Wang YW, Wang YX, Wu C, Cheng XM, et al. Improvement of oxazolone-induced ulcerative colitis in rats using andrographolide. Molecules. 2019;25:74.

    Article  Google Scholar 

  30. Matsuzawa A, Morishita M, Takayama K, Nagai T. Absorption of insulin using water-in-oil-in-water emulsion from an enteral loop in rats. Biol Pharm Bull. 1995;18(12):1718–23.

    Article  CAS  PubMed  Google Scholar 

  31. Onuki Y, Morishita M, Takayama K. Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. J Control Release. 2004;97(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson TH, Wisenman G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954;123(1):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999;13(2):154–68.

    Article  CAS  PubMed  Google Scholar 

  34. Jin D, Wang B, Hu R, Su D, Chen J, Zhou H, et al. A novel colon-specific osmotic pump capsule of Panax notoginseng saponins (PNS): formulation, optimization, and in vitro-in vivo evaluation. AAPS PharmSciTech. 2018;19(5):2322–9.

    Article  CAS  PubMed  Google Scholar 

  35. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull (Tokyo). 1991;39(9):2357–61.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Zhao Z, Khan NR, Hua Z, Huo J, Li Y. Microwave assisted chitosan-polyethylene glycol hydrogel membrane synthesis of curcumin for open incision wound healing. Pharmazie. 2020;75(4):118–23.

    CAS  PubMed  Google Scholar 

  37. Bachhav YG, Patravale VB. SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech. 2009;10:482–7.

  38. Parmar N. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86:327–38.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Su C, Yang C, Liu M, Tang L, Su W, et al. Determination of ginsenosides Rb1, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method: application in a pharmacokinetic study. J Pharmaceut Biome Anal. 2012;64–65:94–7.

    Article  Google Scholar 

  40. Chen W, Dang Y, Zhu C. Simultaneous determination of three major bioactive saponins of Panax notoginseng using liquid chromatography-tandem mass spectrometry and a pharmacokinetic study. Chin Med. 2010;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu HF, Yang JL, Du FF, Gao XM, Ma XT, Huang YH, et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos. 2009;37:2290–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kasaian MT, Page KM, Fish S, Brennan A, Cook TA, Moreira K, et al. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice. Immunology. 2014;143:416–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014;18:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Axelsson LG, Landström E, Bylund-Fellenius AC. Experimental colitis induced by dextran sulphate sodium in mice: beneficial effects of sulphasalazine and olsalazine. Aliment Pharmacol Ther. 1998;12:925–34.

    Article  CAS  PubMed  Google Scholar 

  45. Sun AN, Ren GY, Deng C, Zhang JL, Luo XP, Wu XJ, et al. C-glycosyl flavonoid orientin improves chemically induced inflammatory bowel disease in mice. J Funct Foods. 2016;21:418–30.

    Article  CAS  Google Scholar 

  46. West GA, Matsuura T, Levine AD, Klein JS, Fiocchi C. Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology. 1996;110:1683–95.

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Ouyang Q, Luo WJ. Oxazolone-induced murine model of ulcerative colitis. Chin J Dig Dis. 2004;5:165–8.

    Article  PubMed  Google Scholar 

  48. Dames P, Bergann T, Fromm A, Bücker R, Barmeyer C, Krug SM, et al. Interleukin-13 affects the epithelial sodium channel in the intestine by coordinated modulation of STAT6 and p38 MAPK activity. J Physiol. 2015;593:5269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–64.

    Article  CAS  PubMed  Google Scholar 

  50. Rosen MJ, Chaturvedi R, Washington MK, Kuhnhein LA, Moore PD, Coggeshall SS, et al. Stat6 deficiency ameliorates severity of oxazolone colitis by decreasing expression of claudin-2 and Th2-inducing cytokines. J Immunol. 2013;190:1849–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shanghai University of Traditional Chinese Medicine Ethics Committee for their kind guidance in the animal experiments, the Shanghai University of Traditional Chinese Medicine for providing the technical platform, and the Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd for providing funding support.

Funding

This work was supported by Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd. (E4-D200004).

Author information

Authors and Affiliations

Authors

Contributions

Yaru Wang performed most of the experiments and data collection, analyzed the data, and wrote the manuscript. Yunxia Shang, Fengyu Tang, and Kun Qiu participated in completing the study of the ulcerative colitis experiment. Xiaohui Wei designed the experiments, supervised the study, and contributed to the finalizing of the manuscript. Zhengtao Wang provided valuable comments on the experimental design. All authors reviewed the manuscript and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaohui Wei.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shang, Y., Tang, F. et al. Self-Double-Emulsifying Drug Delivery System Enteric-Coated Capsules: A Novel Approach to Improve Oral Bioavailability and Anti-inflammatory Activity of Panax notoginseng Saponins. AAPS PharmSciTech 24, 90 (2023). https://doi.org/10.1208/s12249-023-02549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02549-0

Keywords

Navigation