Skip to main content

Advertisement

Log in

Enhanced Optimal Parameter-Based Nebulizer Design for Flow Analysis of Fluticasone Propionate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A jet nebulizer sprays a fine mist or aerosol directly into the lungs to reduce inflammation, expand airways, and make breathing easier for respiratory patients. Asthma, COPD, emphysema, and cystic fibrosis are treated with jet nebulizers. They are chosen over other nebulizers for their shorter treatment time and wider medication compatibility. For mechanically ventilated patients, jet nebulizers humidify oxygen to provide bronchodilators, antibiotics, and other respiratory medications. Additionally, they treat pneumonia, bronchitis, and other lung infections. Aerosol therapy requires medical jet nebulizers. However, experiment setup is time-consuming and challenging to enhance smaller droplet output. The study is aimed at enhancing the nebulizer and process parameters using numerical simulation and comparing the results to experimental data from the Malvern Spraytec™ laser diffraction system. This numerical model improves nebulization knowledge and predicts process parameters that affect output. Ansys Fluent was used to analyze a Creo-designed jet nebulizer solid model. The Spraytec™ experimental method was utilized to characterize fluticasone propionate’s aerosol output and build the best nebulizer. Laser diffraction and computational fluid dynamics (CFD) analysis measured the nebulizer aerosol output. Comparing particle size data between 2 and 5 μm. The results are similar, with a difference of 4.20%. Taguchi optimization found the optimal process parameter, and a conformation test enhanced the process parameter. The nebulizer generates 8.57% more fluticasone propionate at optimal particle size. The optimized nebulizer generates aerosols reliably and speeds up patient recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Marieb E. Essentials of human anatomy and physiology. San Francisco, CA: Benjamin/Cummings Science Publishing; 1999. p. 393.

    Google Scholar 

  2. Armer, T. Opportunities for innovation in inhalation aerosols. Institute of Liquid Atomization and Spray Systems, Dearborn, MI. 2001.

  3. Martonen TB, Zhang Z, Lessmann RC. Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci Technol. 1993;19:133–56. https://doi.org/10.1080/02786829308959627.

    Article  CAS  Google Scholar 

  4. Corcoran TE, Dauber JH, Cigier N, Iacono AT. Improving drug delivery from medical nebulizers: the effects of increased nebulizer flow rate and reservoirs. J Aerosol Med. 2002;15(3):271–82. https://doi.org/10.1089/089426802760292618.

    Article  CAS  PubMed  Google Scholar 

  5. Vecellio L, Kippax P, Rouquette S, Diot P. Influence of realistic airflow rate on aerosol generation by nebulizers. Int J Pharm. 2009;371:99–105. https://doi.org/10.1016/j.ijpharm.2008.12.027.

    Article  CAS  PubMed  Google Scholar 

  6. Corcoran TE, Chigier N. Characterization of the laryngeal jet using phase Doppler interferometry. J Aerosol Med. 2000;13(2):125–37. https://doi.org/10.1089/089426800418659.

    Article  CAS  PubMed  Google Scholar 

  7. Corcoran TE, Chigier N. Inertial deposition effects: a study of aerosol mechanics in the trachea using laser Doppler velocimetry and fluorescent dye. J Biomech Eng. 2002;124:629–37. https://doi.org/10.1115/1.1516572.

    Article  CAS  PubMed  Google Scholar 

  8. Shen S-C, Wang Y-J, Chen Y-Y. Design and fabrication of medical micronebulizer. Sens Actuators, A .2008;144:135–143. https://doi.org/10.1016/j.sna.2007.12.004.

  9. Jeng YR, Su CC, Feng GH, Peng YY. An investigation into a piezoelectrically actuated nebulizer with μEDM-made micronozzle array. Exp Therm Fluid Sci. 2007;31:1147–56. https://doi.org/10.3390/fluids5020091.

    Article  CAS  Google Scholar 

  10. Su G, Longest PW, Pidaparti RM. A novelmicropump droplet generator for aerosol drug delivery: design simulations. Biomicrofluidics. 2010;4:044108–18. https://doi.org/10.1063/1.3517231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai M Jr, Huang CY, Chen CH, Linliu K, Lin JD. Influence of liquid hydrophobicity and nozzle passage curvature onmicrofluidic dynamics in a drop ejection process. J Micromech Microeng. 2010;20:015–33. https://doi.org/10.1088/0960-1317/20/1/015033.

    Article  CAS  Google Scholar 

  12. Fleming JS, Epps BP, Conway JH, Martonen TB. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med. 2006;19:268–78. https://doi.org/10.1089/jam.2006.19.268.

    Article  PubMed  Google Scholar 

  13. Coates AL, Allen PD, MacNeish CF, Ho SL, Lands LC. Effect of size and disease on estimated deposition of drugs administered using jet nebulization in children with cystic fibrosis. Chest. 2001;119:1123–30. https://doi.org/10.1378/CHEST.119.4.1123.

    Article  CAS  PubMed  Google Scholar 

  14. Asgharian B, Hofmann W, Bergmann R. Particle deposition in a multiple path model of the human lung. Aerosol Sci Technol. 2001;34:332–9. https://doi.org/10.1080/02786820151092478.

    Article  CAS  Google Scholar 

  15. ICRP (International Commission for Radiological Protection). Human respiratory tract model for radiological protection. Pergamon Press, Oxford, UK. 1994;66.

  16. Freijer JI, Cassee FR, Subramaniam R, Asghararian B, Anjilvel S, Miller FJ, van Bree L, Rombout PJA. Multiple path particle deposition model (MPP Dep version 1.11). A model for human and rat airway particle deposition. RIVM Report 650010019. National Institute for Public Health and the Environment (RIVM). Chemical Industry Institute of Toxicology (CIIT). Bithoven, The Netherlands. 1999.

  17. Jarvis NS, Birchall A, James AC, Bailey MR, Dorrian M-F. LUDEP 2.0 personal computer program for calculating internal doses using the ICRP publication 66 respiratory tract model. National Radiological Protection Board, Chilton, UK. 1996.

  18. Ho SL, Kwong WT, O’Drowsky L, Coates AL. Evaluation of four breath enhanced nebulizers for home use. J Aerosol Med. 2001;14:467–75. https://doi.org/10.1089/08942680152744677.

    Article  CAS  PubMed  Google Scholar 

  19. Katz SL, Ho SL, Coates AL. Nebulizer choice for inhaled colistin treatment in cystic fibrosis. Chest. 2001;19:250–5. https://doi.org/10.1378/chest.119.1.250.

    Article  Google Scholar 

  20. Leung K, Louca E, Munson K, Dutzar B, Anklesaria P, Coates AL. Calculating. 2007. https://doi.org/10.1128/JVI.00346-10.

    Article  Google Scholar 

  21. Leung K, Louca E, Coates AL. Comparison of breath-enhanced to breath-actuated nebulizers for rate, consistency, and efficiency. Chest. 2004;126:1619–27. https://doi.org/10.1378/chest.126.5.1619.

    Article  PubMed  Google Scholar 

  22. Gemci T, Shortall B, Allen GM, Corcoran TE, Chigier N. A CFD study of the throat during aerosol drug delivery using heliox and air. J Aerosol Sci. 2003;34:1175–92. https://doi.org/10.1016/S0021-8502(03)00094-6.

    Article  CAS  Google Scholar 

  23. Coates AL, MacNeish CF, Lands LC, Meisner D, Kelemen S, Vadas EB. A comparison of the availability of tobramycin for inhalation from vented vs. unvented nebulizers. Chest. 1998;113:951–6. https://doi.org/10.1378/chest.113.4.951.

    Article  CAS  PubMed  Google Scholar 

  24. Wong W, Fletcher DF, Traini D, Chan H-K, Young PM. The use of computational approaches in inhaler development. Adv Drug Deliv Rev. 2012;64(4):312–22. https://doi.org/10.1016/j.addr.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  25. Gebhart J, Heicwer G, Heyder J, Roth C, Stahlhofen W. The use of light scattering photometry in aerosol medicine. J Aerosol Med. 1988;2:89–112. https://doi.org/10.1089/jam.1988.1.89.

    Article  Google Scholar 

  26. Clark AR, Chambers CB, Muir D, Newhouse MT, Paboojian S, Schuler C. The effect of biphasic inhalation profiles on the deposition and clearance of coarse bolus aerosols. J Aerosol Med. 2007;20:75–82. https://doi.org/10.1089/jam.2006.0557.

    Article  CAS  PubMed  Google Scholar 

  27. Darquenne C, Brand P, Heyder J, Paiva M. Aerosol dispersion in human lung: comparison between numerical simulations and experiments for bolus tests. J Appl Physiol. 1997;83:966–74. https://doi.org/10.1152/jappl.1997.83.3.966.

    Article  CAS  PubMed  Google Scholar 

  28. Kim CS, Hu SC, DeWitt P, Gerrity TR. Assessment of regional deposition of inhaled particles in human lungs by serial bolus delivery method. J Appl Physiol. 1996;81:2203–13. https://doi.org/10.1152/jappl.1996.81.5.2203.

    Article  CAS  PubMed  Google Scholar 

  29. Kim CS, Hu SC. Total respiratory tract deposition of fine micro meter-sized particles in healthy adults: empirical equations for sex and breathing pattern. J Appl Physiol. 2006;101:401–12. https://doi.org/10.1152/japplphysiol.00026.2006.

    Article  PubMed  Google Scholar 

  30. Menter F. Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference.1993; 2906. https://doi.org/10.2514/6.1993-2906.

  31. Zhang R, Cong T, Tian W, Qiu S, Su G. Effects of turbulence models on forced convection subcooled boiling in vertical pipe. Ann Nucl Energy. 2015;80:293–302. https://doi.org/10.1016/j.anucene.2015.01.039.

    Article  CAS  Google Scholar 

  32. Arto Voutilainen, Statistical inversion methods for the reconstruction of aerosol size distributions, 2001;67–94. https://doi.org/10.1080/174159701088027753.

  33. Carvalho TC, McConville JT. The function and performance of aqueous aerosol devices for inhalation therapy. J Pharm Pharmacol. 2016;68(5):556–78. https://doi.org/10.1111/jphp.12541.

    Article  CAS  PubMed  Google Scholar 

  34. Steven M. Donn., Sunil K. Sinha. Manual of neonatal respiratory care. 3rd Edition, Springer.2012.

  35. William Wong A, David F. Fletcher B, Daniela Traini A, Hak-Kim Chan A, Paul M. Young A. The use of computational approaches in inhaler development. Advanced Drug Delivery Reviews. 2012;64:312–322. https://doi.org/10.1016/j.addr.2011.10.004.

  36. Muers M. Overview of nebulizer treatment. Thorax. 1997;25:255–305. https://doi.org/10.1136/thx.52.2008.s25.

    Article  Google Scholar 

  37. European Respiratory Society Guidelines on the use of nebulizers. Eur Respir J.2001; 18:228–42. https://doi.org/10.1183/09031936.01.00220001.

  38. Respironics® Clinician’s Guide I-neb adaptive aerosol delivery (AAD) system for target inhalation mode (TIM) and tidal breathing mode (TBM). Respironics®.

  39. Lefebvre AH, McDonell VG. Atomization and sprays. 2017: CRC press.

  40. Taguchi G. System of experimental design: engineering methods to optimize quality and minimize costs, UNIPUB/Kraus International Publications, 1987.

  41. Montgomery DC. Design and analysis of experiments-second edition. Qual Reliab Eng Int. 1987;3:212–212. https://doi.org/10.1002/qre.4680030319.

    Article  Google Scholar 

  42. Carman P, Tigwell P. CATIA reference guide, 2nd. revised. US: On Word Press; 1998.

    Google Scholar 

  43. Practical aspects of finite element simulation: a study guide, 3rd ed., Academic Program, Altair University, ALTAIR Hyper Works 11.0.

  44. CFX: computational fluid dynamics, Ansys, HVAC, Nuadha Trev,International Book Market Service Limited, 2012.

  45. Allen TT. Software overview and methods review: Minitab. London: In Introduction to engineering statistics and lean six sigma. Springer; 2019. p. 575–600.

    Google Scholar 

  46. Minitab,. Statistical software, Version 16. State College: Minitab Incorporation; 2016.

    Google Scholar 

  47. Malvern-Instruments, Spraytec User Manual MAN0368. 2017, Issue.

  48. Malvern/INSITEC, Method for measuring particle size in the presence of multiple scattering. 1997, Google Patents: US.

  49. Pui DY, Romay-Novas F, Liu BY. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci Technol. 1987;3:301–15.

    Article  Google Scholar 

  50. Nekahi A, Dehghani K. Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology. Mater Des. 2010;31:3845–51. https://doi.org/10.1016/j.msea.2010.07.088.

    Article  CAS  Google Scholar 

  51. Moradi M, Ghoreishi M, Frostevarg J, Kaplan AF. An investigation on stability of laser hybrid arc welding. Opt Lasers Eng. 2013;4:481–7. https://doi.org/10.1016/j.optlaseng.2012.10.016.

    Article  Google Scholar 

  52. Moradi M, Ghoreishi M, Torkamany M. Modelling and optimization of nd: Yag laser and tungsten inert gas (TIG) hybrid welding of stainless steel. Lasers in Engineering (Old City Publishing). 2017;96:1–6. https://doi.org/10.1016/j.optlaseng.2017.04.004.

    Article  Google Scholar 

  53. Kuo Y-M, Chan W-H, Lin C-W, Huang S-H, Chen C-C. "haracterization of vibrating mesh aerosol generators. Aerosol and Air Quality Research.2019.

  54. Vecellio L. Influence of realistic airflow rate on aerosol generation by nebulizers. International Journal of Pharmaceutics, 2009;04–17. https://doi.org/10.1016/j.ijpharm.2008.12.027.

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. Vinoth: methodology, conceptualization, data curation, experimentation, simulation, original draft preparation, writing, and editing.

Lokavarapu Bhaskara Rao: conceptualization, validation, investigation, simulation and visualization, supervision, reviewing, and editing.

Corresponding author

Correspondence to Bhaskara Rao Lokavarapu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N, V., Lokavarapu, B. Enhanced Optimal Parameter-Based Nebulizer Design for Flow Analysis of Fluticasone Propionate. AAPS PharmSciTech 24, 85 (2023). https://doi.org/10.1208/s12249-023-02548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02548-1

Keywords

Navigation