Skip to main content

Advertisement

Log in

Construction of Imatinib Controlled Release Film-Forming System Based on Drug Ion-Pair and Oligomeric Ionic Liquids for the Long Local Therapy of Cutaneous Melanoma

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

An imatinib controlled release film-forming system (FFS) was developed based on the drug ion-pair and newly designed oligomeric ionic liquids (OILs) for the topical therapy of cutaneous melanoma, which avoided the systemic side-effect of oral administration and maintained a long local therapy effect. The OILs significantly improved the drug release capacity about 1.5-fold, and the formability and stability of FFSs (verified by AFM/PLM). The in vivo anti-tumor efficacy studies in melanoma tumor bearing mice showed that compared with the oral capsules, the topical application of the optimized imatinib FFS significantly (p < 0.01) increased tumor inhibition rate (67.54 ± 2.72%) and the amount of apoptotic cells. As confirmed by FT-IR and NMR, the partial protonation of OILs were demonstrated to have high hydrogen bond forming capacity, thus showing low polarity and good biocompatibility. More importantly, based on 13C-NMR study, OILs demonstrated higher hydrogen bond forming capacity, and formed bridge between drug ion-pair (O–H of counter-ion) and PVA (O–H), increased the molecular mobility of PVA, thus maintaining a long drug release capacity. Therefore, an imatinib FFS was developed with good therapeutic effect and the effect of drug ion-pair and OILs on increasing the drug skin retention and controlled release of imatinib FFS for topical therapy was clarified at the molecular level, which provided a safe and effective way for the treatment of cutaneous melanoma.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

IM:

Imatinib

ILs:

Ionic liquids

OILs:

Oligomeric ionic liquids

SC:

Stratum corneum

FFS:

Film-forming system

TDDS:

Transdermal drug delivery system

IM-LA:

Imatinib-lactic acid

GE:

Geranic acid

OLE:

Oleic acid

LA:

Lactic acid

ERU:

Erucic acid

LAU:

Lauric acid

DEC:

Decanoic acid

BEN:

Benzoic acid

LIN:

Linoleic acid

TIR:

Tumor inhibition rate

FT-IR:

Fourier transform infrared

ODO:

Caprylic/capric triglyceride

CH-GE:

Oligomeric ionic liquids prepared from choline and geranic acid

PVA:

Polyvinyl alcohol

References

  1. U.S. Department of Health and Human Services. Cancer Statistics. Available from: https://www.cancer.gov/about-cancer/understanding/statistics (Accessed 5 Jan 2023).

  2. Halder J, Mishra A, Kar B, Ghosh G, Rath G. Recent advances in chemical composition and transdermal delivery systems for topical bio-actives in skin cancer. Curr Top Med Chem. 2022. https://doi.org/10.2174/1568026622666220902104906.

  3. Wei X, Mao L, Chi Z, Sheng X, Cui C, Kong Y, Dai J, Wang X, Li S, Tang B, Lian B, Yan X, Bai X, Zhou L, Guo J, Si L. Efficacy Evaluation of Imatinib for the Treatment of Melanoma: Evidence From a Retrospective Study. Oncol Res. 2019;27(4):495–501. https://doi.org/10.3727/096504018X15331163433914.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Labala S, Mandapalli PK, Kurumaddali A, Venuganti VV. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm. 2015;12(3):878–88. https://doi.org/10.1021/mp5007163.

    Article  CAS  PubMed  Google Scholar 

  5. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8. https://doi.org/10.1038/nbt.1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Bocxlaer K, McArthur KN, Harris A, Alavijeh M, Braillard S, Mowbray CE, Croft SL. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics. 2021;13(4):516. https://doi.org/10.3390/pharmaceutics13040516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frederiksen K, Guy RH, Petersson K. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2015;91:9–15. https://doi.org/10.1016/j.ejpb.2015.01.002.

    Article  CAS  Google Scholar 

  8. Davis AF, Hadgraft J. Effect of supersaturation on membrane transport: 1. hydrocortisone acetate. Int J Pharma. 1991;76(1–2):1–8. https://doi.org/10.1016/0378-5173(91)90337-N.

    Article  CAS  Google Scholar 

  9. Moser K, Kriwet K, Froehlich C, Kalia YN, Guy RH. Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug. Pharm Res. 2001;18(7):1006–11. https://doi.org/10.1023/A:1010948630296.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Ma N, Zhang L, Ling G, Zhang P. Applications of choline-based ionic liquids in drug delivery. Int J Pharma. 2022;612:121366. https://doi.org/10.1016/j.ijpharm.2021.121366.

    Article  CAS  Google Scholar 

  11. Wu X, Zhang H, He S, Yu Q, Lu Y, Wu W, Ding N, Zhu Q, Chen Z, Ma Y, Qi J. Improving dermal delivery of hyaluronic acid by ionic liquids for attenuating skin dehydration. Int J Biol Macromol. 2020;150:528–35. https://doi.org/10.1016/j.ijbiomac.2020.02.072.

    Article  CAS  PubMed  Google Scholar 

  12. Tanner EEL, Curreri AM, Balkaran JPR, Selig‐Wober NC, Yang AB, Kendig C et al. (2019). Design principles of ionic liquids for transdermal drug delivery. Adv Mater., 31(27). https://doi.org/10.1002/adma.201901103.

  13. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, Goto M. Synthesis and characterization of choline-fatty-acid-based ionic liquids: A new biocompatible surfactant. J Colloid Interface Sci. 2019;551:72–80. https://doi.org/10.1016/j.jcis.2019.04.095.

    Article  CAS  PubMed  Google Scholar 

  14. Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert Opin Drug Deliv. 2013;10(10):1367–81. https://doi.org/10.1517/17425247.2013.808185.

    Article  CAS  PubMed  Google Scholar 

  15. Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, Severino P, Paganelli MO, Chaud MV, Silva AM. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022;8(2):e08938. https://doi.org/10.1016/j.heliyon.2022.e08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huda MN, Deaguero IG, Borrego EA, Kumar R, Islam T, Afrin H, Varela-Ramirez A, Aguilera RJ, Tanner EEL, Nurunnabi M. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. J Control Release. 2022;349:783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Labala S, Jose A, Chawla SR, et al. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm. 2017;525(2):407–17. https://doi.org/10.1016/j.ijpharm.2017.03.087.

    Article  CAS  PubMed  Google Scholar 

  18. Cristofoli M, Kung CP, Hadgraft J, Lane ME, Sil BC. Ion Pairs for Transdermal and Dermal Drug Delivery: A Review. Pharmaceutics. 2021;13(6):909. https://doi.org/10.3390/pharmaceutics13060909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valenta C, Siman U, Kratzel M, Hadgraft J. The dermal delivery of lignocaine: influence of ion pairing. Int J Pharm. 2000;197(1–2):77–85. https://doi.org/10.1016/s0378-5173(99)00453-6.

    Article  CAS  PubMed  Google Scholar 

  20. Pirraco A, Coelho P, Rocha A, Costa R, Vasques L, Soares R. Imatinib targets PDGF signaling in melanoma and host smooth muscle neighboring cells. J Cell Biochem. 2010;111(2):433–41. https://doi.org/10.1002/jcb.22725.

    Article  CAS  PubMed  Google Scholar 

  21. Gujrati A, Khanal SR, Pastewka L, Jacobs T. Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across All Scales. ACS Appl Mater Interfaces. 2018;10(34):29169–78. https://doi.org/10.1021/acsami.8b09899.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Zhang Y, Gui S, Huang J, Cao J, Li Z, Li Q, Chu X. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review. AAPS PharmSciTech. 2018;19(5):2023–40. https://doi.org/10.1208/s12249-018-1069-1.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Ding Y, Wang J. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners. Nanomaterials (Basel, Switzerland). 2019;9(10):1397. https://doi.org/10.3390/nano9101397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, Keng PS. Molecular Dynamics and Physical Stability of Pharmaceutical Co-amorphous Systems: Correlation Between Structural Relaxation Times Measured by Kohlrausch-Williams-Watts With the Width of the Glass Transition Temperature (ΔTg) and the Onset of Crystallization. J Pharm Sci. 2019;108(12):3848–58. https://doi.org/10.1016/j.xphs.2019.09.013.

    Article  CAS  PubMed  Google Scholar 

  25. Islam MR, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Choline and amino acid based biocompatible ionic liquid mediated transdermal delivery of the sparingly soluble drug acyclovir. Int J Pharma. 2020;582:119335. https://doi.org/10.1016/j.ijpharm.2020.119335.

    Article  CAS  Google Scholar 

  26. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl Mater Interfaces. 2021;13(36):42461–72. https://doi.org/10.1021/acsami.1c11533.

    Article  CAS  PubMed  Google Scholar 

  27. Tanner E, Ibsen KN, Mitragotri S. Transdermal insulin delivery using choline-based ionic liquids (CAGE). Journal of controlled release : official journal of the Controlled Release Society. 2018;286:137–44. https://doi.org/10.1016/j.jconrel.2018.07.029.

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee, A., Ibsen, K., Iwao, Y., Zakrewsky, M., & Mitragotri, S. (2017). Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Advanced healthcare materials, 6(15), https://doi.org/10.1002/adhm.201601411.

  29. Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, Goumas AM, Iyer RS, Del Sesto RE, Koppisch AT, Fox DT, Mitragotri S. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci USA. 2014;111(37):13313–8. https://doi.org/10.1073/pnas.1403995111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kothari K, Ragoonanan V, Suryanarayanan R. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12(1):162–70. https://doi.org/10.1021/mp5005146.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No: 81803468).

Author information

Authors and Affiliations

Authors

Contributions

Junzhu Wang: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing—original draft, Writing—review & editing. Han Sun: Methodology, Investigation. Wenxuan Jia: Methodology, Investigation. Yilin Song: Validation, Investigation. Peng Quan: Validation, Formal analysis. Liang Fang: Resources, Supervision. Chao Liu: Conceptualization, Resources, Writing—original draft, Writing—review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, H., Jia, W. et al. Construction of Imatinib Controlled Release Film-Forming System Based on Drug Ion-Pair and Oligomeric Ionic Liquids for the Long Local Therapy of Cutaneous Melanoma. AAPS PharmSciTech 24, 87 (2023). https://doi.org/10.1208/s12249-023-02546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02546-3

Keywords

Navigation