Skip to main content
Log in

Detrimental Effects of Elevated Temperatures on the Structure and Activity of Phenylalanine Ammonia Lyase-Bovine Serum Albumin Mixtures and the Stabilizing Potential of Surfactant and Sugars

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

We propose encapsulating phenylalanine ammonia lyase (PAL)-bovine serum albumin (BSA) mixtures as potential oral therapy for the management of phenylketonuria. PAL will metabolize phenylalanine in the gastrointestinal tract while BSA will minimize product inhibition and allow PAL to work at its Vmax. We intend manufacturing microcapsules using spray drying and the proteins will be exposed to heat. In the current pre-formulation studies, we determined the effect of elevated temperatures on the structure and activity of PAL-BSA mixtures and evaluated the stabilizing potential of excipients. Exposure of PAL to 75°C decreased its Vmax. BSA exacerbated the elevated temperature-mediated decrease in PAL Vmax and completely lost the ability to protect PAL from trans cinnamic acid (TCA)-mediated product inhibition. Circular dichroism studies revealed that elevated temperatures did not affect the secondary structure of PAL but decreased BSA α-helicity. Binding experiments showed that elevated temperature-mediated loss in BSA α-helicity was associated with markedly decreased binding and sequestration of TCA, which accounts for the inability of BSA to relieve PAL product inhibition. Sucrose, trehalose, and low concentrations of sodium dodecyl sulfate conferred concentration dependent stabilization of BSA secondary structure against thermal denaturation. The sugars enhanced PAL Vmax, markedly improved TCA binding to BSA, and restored the ability of BSA to relieve PAL product inhibition. PAL-BSA mixtures exposed to elevated temperatures in the presence of sucrose and trehalose exhibited high and constant PAL activity. The results justify inclusion of these sugars in the eventual microcapsule manufacturing process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

BH4:

Tetrahydrobiopterin

CD:

Circular dichroism

g.i.t.:

Gastrointestinal tract

Km:

Michaelis constant

PAH:

Phenylalanine hydroxylase

Phe:

Phenylalanine

PAL:

Phenylalanine ammonia lyase

PKU:

Phenylketonuria

s/o:

Solid in oil

sc:

Subcutaneous

SDS:

Sodium dodecyl sulfate

TCA:

Trans cinnamic acid

V max :

Maximum velocity

References

  1. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria Lancet. 2010;376(9750):1417–27.

    Article  CAS  PubMed  Google Scholar 

  2. Feillet F, van Spronsen FJ, MacDonald A, Trefz FK, Demirkol M, Giovannini M, et al. Challenges and pitfalls in the management of phenylketonuria. Pediatrics. 2010;126(2):333–41.

    Article  PubMed  Google Scholar 

  3. Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007;28(9):831–45.

    Article  CAS  PubMed  Google Scholar 

  4. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis. 2010;33(6):665–70.

    Article  PubMed  Google Scholar 

  6. Trefz FK, Belanger-Quintana A. Sapropterin dihydrochloride: a new drug and a new concept in the management of phenylketonuria. Drugs of today. 2010;46(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  7. Hydery T, Coppenrath VA. A Comprehensive review of pegvaliase, an enzyme substitution therapy for the treatment of phenylketonuria. Drug Target Insights. 2019;13:1177392819857089.

    Article  PubMed  PubMed Central  Google Scholar 

  8. MacDonald MJ, D'Cunha GB. A modern view of phenylalanine ammonia lyase. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2007;85(3):273–82.

  9. Mahan KC, Gandhi MA, Anand S. Pegvaliase: a novel treatment option for adults with phenylketonuria. Curr Med Res Opin. 2019;35(4):647–51.

    Article  CAS  PubMed  Google Scholar 

  10. Besada C, Hakami A, Pillai G, Yetsko K, Truong N, Little T, et al. Preformulation studies with phenylalanine ammonia lyase: essential prelude to a microcapsule formulation for the management of phenylketonuria. J Pharm Sci. 2022;111(7):1857–67.

    Article  CAS  PubMed  Google Scholar 

  11. Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. 1998;16(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tahara Y, Kamiya N, Goto M. Solid-in-oil dispersion: a novel core technology for drug delivery systems. Int J Pharm. 2012;438(1–2):249–57.

    Article  CAS  PubMed  Google Scholar 

  13. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Drying Technol. 2006;24:763–8.

    Article  CAS  Google Scholar 

  14. Pinto J.T FE, Dieplinger J,Dekner M, Makert C, Nieder M, Paudel A. Progress in spray-drying of protein pharmaceuticals: literature analysis of trends in formulation and process attributes. Drying Technology. 2021;39(11):1415–46.

  15. Habibi-Moini S, D’Mello AP. Evaluation of possible reasons for the low phenylalanine ammonia lyase activity in cellulose nitrate membrane microcapsules. Int J Pharm. 2001;215(1–2):185–96.

    Article  CAS  PubMed  Google Scholar 

  16. Cui JD, Li LL, Bian HJ. Immobilization of cross-linked phenylalanine ammonia lyase aggregates in microporous silica gel. PLoS ONE. 2013;8(11): e80581.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cui Jd, Ll C, Sp Z, Zhang Yf Su, Zg MG. Hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase from Rhodotorula glutinis. PLoS ONE. 2014;9(5): e97221.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cui J, Liang L, Han C. Stabilization of phenylalanine ammonia lyase from Rhodotorula glutinis by encapsulation in polyethyleneimine-mediated biomimetic silica. Appl Biochem Biotechnol. 2015;176(4):999–1011.

    Article  CAS  PubMed  Google Scholar 

  19. Rees GD, Jones HD. Stability of l-phenylalanine ammonia-lyase in aqueous solution and as the solid state in air and organic solvents. Enzyme Microb Technol. 1996;19(4):282–8.

    Article  CAS  Google Scholar 

  20. Good NE, Izawa S. Hydrogen ion buffers. Methods Enzymol. 1972;24:53–68.

    Article  CAS  PubMed  Google Scholar 

  21. Kovacs K, Banoczi G, Varga A, Szabo I, Holczinger A, Hornyanszky G, et al. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS ONE. 2014;9(1): e85943.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry. 2004;43(36):11403–16.

    Article  CAS  PubMed  Google Scholar 

  23. Woody RW. Circular dichroism. Methods Enzymol. 1995;246:34–71.

    Article  CAS  PubMed  Google Scholar 

  24. Marini I, Moschini R, Del Corso A, Mura U. Chaperone-like features of bovine serum albumin: a comparison with α-crystallin. Cellular and Molecular Life Sciences CMLS. 2005;62(24):3092–9.

    Article  CAS  PubMed  Google Scholar 

  25. Finn TE, Nunez AC, Sunde M, Easterbrook-Smith SB. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J Biol Chem. 2012;287(25):21530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K. Conformational change of bovine serum albumin by heat treatment. J Protein Chem. 1989;8(5):653–9.

    Article  CAS  PubMed  Google Scholar 

  27. Moriyama Y, Kawasaka Y, Takeda K. Protective effect of small amounts of sodium dodecyl sulfate on the helical structure of bovine serum albumin in thermal denaturation. J Colloid Interface Sci. 2003;257(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lin VJ, Koenig JL. Raman studies of bovine serum albumin. Biopolymers. 1976;15(1):203–18.

    Article  CAS  PubMed  Google Scholar 

  29. Bischof JC, He X. Thermal stability of proteins. Ann N Y Acad Sci. 2006;1066(1):12–33.

    Article  Google Scholar 

  30. Bian H, Zhang H, Yu Q, Chen Z, Liang H. Studies on the interaction of cinnamic acid with bovine serum albumin. Chem Pharm Bull. 2007;55(6):871–5.

    Article  CAS  Google Scholar 

  31. Singh TS, Mitra S. Interaction of cinnamic acid derivatives with serum albumins: a fluorescence spectroscopic study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;78(3):942–8.

    Article  Google Scholar 

  32. Nunes NM, Pacheco AFC, Agudelo AJP, da Silva LHM, Pinto MS, Hespanhol MDC, et al. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: a thermodynamic approach. Food Chem. 2017;237:525–31.

    Article  CAS  PubMed  Google Scholar 

  33. Paul BK, Samanta A, Guchhait N. Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter. J Phys Chem B. 2010;114(18):6183–96.

    Article  CAS  PubMed  Google Scholar 

  34. Tong JHT, Qin A, Sun JZ, Tang BZ. Deciphering the binding behaviours of BSA using ionic AIE-active fluorescent probes. Faraday Discuss. 2017;196:285–303.

    Article  CAS  PubMed  Google Scholar 

  35. Khatun S, Riyazuddeen, Yasmeena,S., Kumar, A., Subbarao,N. Calorimetric, spectroscopic and molecular modelling insight into the interaction of gallic acid with bovine serum albumin. The Journal of Chemical Thermodynamics. 2018;122:85 -94.

  36. Precupas A, Sandu R, Popa VT. Quercetin influence on thermal denaturation of bovine serum albumin. J Phys Chem B. 2016;120(35):9362–75.

    Article  CAS  PubMed  Google Scholar 

  37. Sułkowska A, Maciążek M, Równicka J, Bojko B, Pentak D, Sułkowski WW. Effect of temperature on the methotrexate BSA interaction: spectroscopic study. J Mol Struct. 2007;834:162–9.

    Article  Google Scholar 

  38. Roy AS, Pandey NK, Dasgupta S. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies. Mol Biol Rep. 2013;40(4):3239–53.

    Article  Google Scholar 

  39. Brown JR. Albumin: structure, function, and uses. Pergamon Press. 1977;Rosenoer, V.M., Oraz, M., and Rotshild, M.A. Eds:27.

  40. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63(13):1118–59.

    Article  CAS  PubMed  Google Scholar 

  41. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  PubMed  Google Scholar 

  42. Otzen D. Protein-surfactant interactions: a tale of many states. Biochem Biophys Acta. 2011;1814(5):562–91.

    CAS  PubMed  Google Scholar 

  43. Moriyama Y, Takeda K. Re-formation of the helical structure of human serum albumin by the addition of small amounts of sodium dodecyl sulfate after the disruption of the structure by urea. A comparison with bovine serum albumin. Langmuir. 1999;15(6):2003–8.

  44. Moriyama Y, Watanabe E, Kobayashi K, Harano H, Inui E, Takeda K. Secondary structural change of bovine serum albumin in thermal denaturation up to 130 C and protective effect of sodium dodecyl sulfate on the change. J Phys Chem B. 2008;112(51):16585–9.

    Article  CAS  PubMed  Google Scholar 

  45. Baier S, McClements DJ. Impact of preferential interactions on thermal stability and gelation of bovine serum albumin in aqueous sucrose solutions. J Agric Food Chem. 2001;49(5):2600–8.

    Article  CAS  PubMed  Google Scholar 

  46. Panzica M, Emanuele A, Cordone L. Thermal aggregation of bovine serum albumin in trehalose and sucrose aqueous solutions. J Phys Chem B. 2012;116(39):11829–36.

    Article  CAS  PubMed  Google Scholar 

  47. Shil S, Das N, Sengupta B, Sen P. Sucrose-induced stabilization of domain-ii and overall human serum albumin against chemical and thermal denaturation. ACS Omega. 2018;3(12):16633–42.

    Article  CAS  Google Scholar 

  48. Barreca D, Lagana G, Ficarra S, Tellone E, Leuzzi U, Magazu S, et al. Anti-aggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophys Chem. 2010;147(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  49. Hedoux A, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, et al. Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B. 2009;113(17):6119–26.

    Article  CAS  PubMed  Google Scholar 

  50. Lavecchia Roberto ZA. Effect of trehalose on thermal stability of bovine serum albumin. Chem Lett. 2010;39:38–9.

    Article  Google Scholar 

  51. Back JF, Oakenfull D, Smith MB. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 1979;18(23):5191–6.

    Article  CAS  PubMed  Google Scholar 

  52. Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458–65.

    Article  CAS  PubMed  Google Scholar 

  53. Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem. 1981;256(14):7193–201.

    Article  CAS  PubMed  Google Scholar 

  54. Arakawa T, Kita Y, Carpenter JF. Protein–solvent interactions in pharmaceutical formulations. Pharm Res. 1991;8(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  55. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry. 1982;21(25):6536–44.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Bolen DW. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995;34(39):12884–91.

    Article  CAS  PubMed  Google Scholar 

  57. Chang LL, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009;98(9):2886–908.

    Article  CAS  PubMed  Google Scholar 

  58. Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WL. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;114:288–95.

    Article  CAS  Google Scholar 

  59. Jones LS, Randolph TW, Kohnert U, Papadimitriou A, Winter G, Hagmann ML, et al. The effects of Tween 20 and sucrose on the stability of anti-L-selectin during lyophilization and reconstitution. J Pharm Sci. 2001;90(10):1466–77.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang MZ, Pikal K, Nguyen T, Arakawa T, Prestrelski SJ. The effect of the reconstitution medium on aggregation of lyophilized recombinant interleukin-2 and ribonuclease A. Pharm Res. 1996;13(4):643–6.

    Article  CAS  PubMed  Google Scholar 

  61. Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF. Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev. 2001;46(1–3):307–26.

    Article  CAS  PubMed  Google Scholar 

  62. Allison SD, Chang B, Randolph TW, Carpenter JF. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys. 1999;365(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  63. Schebor C, Mazzobre MF, Buera MP. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydr Res. 2010;345(2):303–8.

    Article  CAS  PubMed  Google Scholar 

  64. Yadav JK, Prakash V. Thermal stability of α-amylase in aqueous cosolvent systems. J Biosci. 2009;34(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  65. Miroliaei M, Ranjbar B, Naderi-Manesh H, Nemat-Gorgani M. Thermal denaturation of yeast alcohol dehydrogenase and protection of secondary and tertiary structural changes by sugars: CD and fluorescence studies. Enzyme Microb Technol. 2007;40(4):896–901.

    Article  CAS  Google Scholar 

  66. Lee J, Ko JH, Lin EW, Wallace P, Ruch F, Maynard HD. Trehalose hydrogels for stabilization of enzymes to heat. Polym Chem. 2015;6(18):3443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sola-Penna M, Meyer-Fernandes JR. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys. 1998;360(1):10–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kyle Yetsko for the analyses and plot of the PAL Circular Dichroism data and for helpful discussions.

Funding

This work was supported by funds from Saint Joseph’s University and from the Department of Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Amerh Alahmadi: performed the experiments, plotted figures, conducted statistical analyses of data, and helped with writing the manuscript.

Anil Dmello: conceptualized studies, supervised experiments, and wrote the manuscript.

Corresponding author

Correspondence to Anil Dmello.

Ethics declarations

Competing Interests

Research in our laboratory has received the following patent:

U.S. Patent Application No: 15/495,410, allowed October 16, 2018.

Title: Compositions and methods for the treatment of Phenylketonuria (PKU).

The University of the Sciences has licensed the technology to Abri LLC and the corresponding author owns minority stake in the company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmadi, A., Dmello, A. Detrimental Effects of Elevated Temperatures on the Structure and Activity of Phenylalanine Ammonia Lyase-Bovine Serum Albumin Mixtures and the Stabilizing Potential of Surfactant and Sugars. AAPS PharmSciTech 23, 297 (2022). https://doi.org/10.1208/s12249-022-02446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02446-y

Keywords

Navigation