Skip to main content
Log in

Thermoreversible Carbamazepine In Situ Gel for Intranasal Delivery: Development and In Vitro, Ex Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Over the past decade, intranasal (IN) delivery has been gaining attention as an alternative approach to conventional drug delivery routes targeting the brain. Carbamazepine (CBZ) is available as an orally ingestible formulation. The present study aims to develop a thermoreversible in situ gelling system for delivering CBZ via IN route. A cold method of synthesis has been used to tailor and optimize the thermoreversible gel composition, using poloxamer 407 (P407) (15–20% w/v) and iota carrageenan (ɩ-Cg) (0.15–0.25% w/v). The developed in situ gel showed gelation temperatures (28–33°C), pH (4.5–6.5), rheological properties (pseudoplastic, shear thinning), and mucoadhesive strength (1755.78–2495.05 dyne/cm2). The in vitro release study has shown sustained release behavior (24 h) for gel, containing significant retardation of CBZ release. The release kinetics fit to the Korsmeyer–Peppas model, suggesting the non-Fickian diffusion type controlled release behavior. Ex vivo permeation through goat nasal mucosa showed sustained release from the gel containing 18% P407 with the highest cumulative drug permeated (243.94 µg/cm2) and a permeation flux of 10.16 µg/cm2/h. After treatment with CBZ in situ gel, the barrier function of nasal mucosa remained unaffected. Permeation through goat nasal mucosa using in situ gel has demonstrated a harmless nasal delivery, which can provide a new dimension to deliver CBZ directly to the brain bypassing the blood–brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm. 2018;550:359–71.

    Article  CAS  PubMed  Google Scholar 

  3. Khan N, Shah FA, Rana I, Ansari MM, Din F ud, Rizvi SZH, et al. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm. Elsevier; 2020;577:119033.

  4. Choudhury H, Zakaria NFB, Tilang PAB, Tzeyung AS, Pandey M, Chatterjee B, et al. Formulation development and evaluation of rotigotine mucoadhesive nanoemulsion for intranasal delivery. J Drug Deliv Sci Technol. 2019.

  5. Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update. Ther. Drug Monit. 2018.

  6. Singh RMP, Kumar A, Pathak K. Thermally triggered mucoadhesive in situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech. 2013;14:412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mutalabisin MF, Chatterjee B, Jaffri JM. PH responsive polymers in drug delivery. Res J Pharm Technol. 2018;11:5115.

    Article  Google Scholar 

  8. Shelke S, Shahi S, Jalalpure S, Dhamecha D, Shengule S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Technol. 2015.

  9. Ahmad N, Ahmad R, Ahmad FJ, Ahmad W, Alam MA, Amir M, et al. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci. 2020.

  10. Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, et al. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm. 2020.

  11. Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm. 2011.

  12. Ourani-Pourdashti S, Mirzaei E, Heidari R, Ashrafi H, Azadi A. Preparation and evaluation of niosomal chitosan-based in situ gel formulation for direct nose-to-brain methotrexate delivery. Int J Biol Macromol [Internet]. 2022;213:1115–26. Available from: https://www.sciencedirect.com/science/article/pii/S0141813022012314. Accessed 28 June 2022

  13. Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int J Pharm. 2011.

  14. Li C, Li C, Liu Z, Li Q, Yan X, Liu Y, et al. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int J Pharm. 2014.

  15. Okur NÜ, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol Elsevier. 2019;49:323–33.

    Article  Google Scholar 

  16. Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, et al. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm. Elsevier; 2020;591:120010.

  17. Verekar RR, Gurav SS, Bolmal U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: formulation, characterization, and evaluation. J Drug Deliv Sci Technol. 2020.

  18. Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm Elsevier. 2014;468:272–82.

    Article  CAS  Google Scholar 

  19. Majithiya RJ, Ghosh PK, Umrethia ML, Murthy RSR. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech. 2006;7:67.

    Article  PubMed  Google Scholar 

  20. Nižić Nodilo L, Perkušić M, Ugrina I, Špoljarić D, Jakobušić Brala C, Amidžić Klarić D, et al. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. Netherlands; 2022;175:27–42.

  21. Chen Y, Liu Y, Xie J, Zheng Q, Yue P, Chen L, et al. Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int J Nanomedicine. 2020.

  22. Bai L, Lei F, Luo R, Fei Q, Zheng Z, He N, et al. Development of a thermosensitive in-situ gel formulations of vancomycin hydrochloride: design, preparation, in vitro and in vivo evaluation. J Pharm Sci: Elsevier; 2022.

    Google Scholar 

  23. Xu X, Shen Y, Wang W, Sun C, Li C, Xiong Y, et al. Preparation and in vitro characterization of thermosensitive and mucoadhesive hydrogels for nasal delivery of phenylephrine hydrochloride. Eur J Pharm Biopharm. Elsevier B.V.; 2014;88:998–1004.

  24. Zadbuke N, Shahi S, Jadhav A, Borde S. Development and validation of UV-visible spectroscopic method for estimation of carbamazepine in bulk and tablet dosage form. Int J Pharm Pharm Sci. 2016;8:234–8.

    CAS  Google Scholar 

  25. Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21:62–73.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Cheng G, Hu R, Chen S, Lu W, Gao S, et al. A nasal temperature and pH dual-responsive in situ gel delivery system based on microemulsion of huperzine A: formulation, evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech. Springer; 2019;20:301.

  27. Omar MM, Eleraky NE, El Sisi AM, Hasan OA. Development and evaluation of in-situ nasal gel formulations of nanosized transferosomal sumatriptan: design, optimization, in vitro and in vivo evaluation. Drug Des Devel Ther. Dove Press; 2019;13:4413.

  28. Ban E, Park M, Jeong S, Kwon T, Kim EH, Jung K, et al. Poloxamer-based thermoreversible gel for topical delivery of emodin: influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules. 2017;22.

  29. Kempwade A, Taranalli A. Formulation and evaluation of thermoreversible, mucoadhesive in situ intranasal gel of rizatriptan benzoate. J Sol-Gel Sci Technol. 2014;72:43–8.

    Article  CAS  Google Scholar 

  30. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci Wiley Online Library. 2011;11:748–64.

    Article  CAS  Google Scholar 

  31. Makshakova ON, Faizullin DA, Zuev YF. Interplay between secondary structure and ion binding upon thermoreversible gelation of κ -carrageenan. Carbohydr Polym. Elsevier; 2020;227:115342.

  32. Garg T, K Goyal A. Liposomes: targeted and controlled delivery system. Drug Deliv Lett. Bentham Science Publishers; 2014;4:62–71.

  33. Mahajan HS, Shah SK, Surana SJ. Nasal in situ gel containing hydroxy propyl β-cyclodextrin inclusion complex of artemether: development and in vitro evaluation. J Incl Phenom Macrocycl Chem Springer. 2011;70:49–58.

    Article  CAS  Google Scholar 

  34. Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: an approach for bioavailability enhancement. Saudi Pharm J. 2021.

  35. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Gómez-Ordóñez E, Rupérez P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll Elsevier Ltd. 2011;25:1514–20.

    Article  Google Scholar 

  37. Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug: poloxamer solid dispersions. Int J Pharm Elsevier. 2010;391:162–8.

    Article  CAS  Google Scholar 

  38. Marzouk MA, Osman DA, Abd El-Fattah AI. Formulation and in vitro evaluation of a thermoreversible mucoadhesive nasal gel of itopride hydrochloride. Drug Dev Ind Pharm. Taylor & Francis; 2018;44:1857–67.

  39. Gadad AP, Wadklar PD, Dandghi P, Patil A. Thermosensitive in situ gel for ocular delivery of lomefloxacin. Indian J Pharm Educ Res. 2016;50:S96-105.

    CAS  Google Scholar 

  40. Mahajan HS, Gattani S. In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv. 2010;17:19–27.

    Article  CAS  PubMed  Google Scholar 

  41. Cai Z, Song X, Sun F, Yang Z, Hou S, Liu Z. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin. AAPS PharmSciTech. 2011.

  42. Liu Y, Lu W-L, Wang J-C, Zhang X, Zhang H, Wang X-Q, et al. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control release Elsevier. 2007;117:387–95.

    Article  CAS  Google Scholar 

  43. Liu Y, Zhu Y ying, Wei G, Lu W yue. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: improved in vitro and in vivo sustained release properties. Eur J Pharm Sci. 2009.

  44. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119:5–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was conducted under the Fundamental Research Grant Scheme (FRGS 17-006-0572), sponsored by the Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Keithanchali Mohonanaidu (first author): experimental work and data analysis and writing the manuscript.

Bappaditya Chatterjee (corresponding author): conceptualize the idea and framing the research, review and technical editing of the manuscript, helping fabrication of gel, and responding reviewers’ comments.

Farahidah Mohamed (corresponding author): conceptualize the idea and framing the research, helping physicochemical evaluation of gel, mucoadhesion study, and review of the manuscript.

Syed Mahmood (co-author): ex vivo permeation study and its data interpretation.

Samah Hamed (co-author): rheological analysis and its data interpretation.

Corresponding author

Correspondence to Bappaditya Chatterjee.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohananaidu, K., Chatterjee, B., Mohamed, F. et al. Thermoreversible Carbamazepine In Situ Gel for Intranasal Delivery: Development and In Vitro, Ex Vivo Evaluation. AAPS PharmSciTech 23, 288 (2022). https://doi.org/10.1208/s12249-022-02439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02439-x

Keywords

Navigation