Skip to main content

Advertisement

Log in

Cell-Penetrating Peptides as Passive Permeation Enhancers for Transdermal Drug Delivery

  • Review Article-theme
  • Active and Passive Permeation Enhancement Strategies for Transdermal Delivery of Bioactive Compounds
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cell-penetrating peptides have been widely used as a tool to gain access to cytosol for numerous applications. The review highlights the advances made in preclinical and clinical research using cell-penetrating peptides since their discovery in 1980s. Further, the emphasis is on summarizing the role of cell-penetrating peptides as permeation enhancers for transdermal and topical drug delivery applications. A summary table of preclinical studies utilizing various peptides in combination with different active ingredients and drug delivery systems is included. Lastly, we capture the challenges associated with the cell-penetrating peptides to translate the preclinical work to clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leblanc D. Antibiotics and endodontics. Aust Dent J. 1990;35(6):551.

    CAS  PubMed  Google Scholar 

  2. Haque T, Talukder MMU. Chemical enhancer: a simplistic way to modulate barrier function of the stratum corneum. Adv Pharm Bull. 2018;8(2):169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13(3):175–87.

    Article  CAS  PubMed  Google Scholar 

  4. Klein DC, Namboodiri MA, Auerbach DA. The melatonin rhythm generating system: developmental aspects. Life Sci. 1981;28(18):1975–86.

    Article  CAS  PubMed  Google Scholar 

  5. Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front Pharmacol. 2020;11:697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matijass M, Neundorf I. Cell-penetrating peptides as part of therapeutics used in cancer research. Medicine in Drug Discovery. 2021;10:100092.

    Article  CAS  Google Scholar 

  7. Szabo I, Yousef M, Soltesz D, Bato C, Mezo G, Banoczi Z. Redesigning of cell-penetrating peptides to improve their efficacy as a drug delivery system. Pharmaceutics. 2022;14(5):907. https://doi.org/10.3390/pharmaceutics14050907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maniti O, Alves I, Trugnan G, Ayala-Sanmartin J. Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids. PLoS One. 2010;5(12):e15819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mudhakir D, Harashima H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J. 2009;11(1):65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  CAS  PubMed  Google Scholar 

  12. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10(3):310–5.

    Article  CAS  PubMed  Google Scholar 

  13. Futaki S, Nakase I. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Acc Chem Res. 2017;50(10):2449–56.

    Article  CAS  PubMed  Google Scholar 

  14. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2. FAK and Akt Angiogenesis. 2011;14(3):355–69.

    Article  CAS  PubMed  Google Scholar 

  15. Saalik P, Padari K, Niinep A, Lorents A, Hansen M, Jokitalo E, et al. Protein delivery with transportans is mediated by caveolae rather than flotillin-dependent pathways. Bioconjug Chem. 2009;20(5):877–87.

    Article  CAS  PubMed  Google Scholar 

  16. Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar S, Zakrewsky M, Chen M, Menegatti S, Muraski JA, Mitragotri S. Peptides as skin penetration enhancers: mechanisms of action. J Control Release. 2015;199:168–78.

    Article  CAS  PubMed  Google Scholar 

  18. Staecker H, Jokovic G, Karpishchenko S, Kienle-Gogolok A, Krzyzaniak A, Lin CD, et al. Efficacy and safety of AM-111 in the treatment of acute unilateral sudden deafness-a double-blind, randomized, placebo-controlled phase 3 study. Otol Neurotol. 2019;40(5):584–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiquet C, Aptel F, Creuzot-Garcher C, Berrod J-P, Kodjikian L, Massin P, et al. Postoperative ocular inflammation: a single subconjunctival injection of XG-102 compared to dexamethasone drops in a randomized trial. Am J Ophthalmol. 2017;174:76–84.

    Article  CAS  PubMed  Google Scholar 

  20. Lulla RR, Goldman S, Yamada T, Beattie CW, Bressler L, Pacini M, et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro-Oncology. 2016;18(9):1319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Capron M, Béghin L, Leclercq C, Labreuche J, Dendooven A, Standaert A, et al. Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM). J Clin Med. 2020;9(1):41.

    Article  CAS  Google Scholar 

  22. Alhakamy NA, Fahmy UA, Ahmed OAA. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene. PLoS One. 2019;14(12):e0226639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang T, Wang T, Li T, Ma Y, Shen S, He B, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018;12(10):9693–701.

    Article  CAS  PubMed  Google Scholar 

  24. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS. Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells. Sci Rep. 2018;8(1):8499.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gautam A, Nanda JS, Samuel JS, Kumari M, Priyanka P, Bedi G, et al. Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8. Sci Rep. 2016;6:26278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Su W, Li Q, Li C, Wang H, Li Y, et al. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm. 2013;441(1-2):748–56.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv. 2021;28(1):478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li M, Feng S, Xing H, Sun Y. Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipid-polymer hybrid nanoparticles, which performed better for local anesthetic therapy? Drug Deliv. 2020;27(1):1452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwon SS, Kim SY, Kong BJ, Kim KJ, Noh GY, Im NR, et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int J Pharm. 2015;483(1-2):26–37.

    Article  CAS  PubMed  Google Scholar 

  30. Uchida T, Kanazawa T, Kawai M, Takashima Y, Okada H. Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J Pharmacol Exp Ther. 2011;338(2):443–50.

    Article  CAS  PubMed  Google Scholar 

  31. Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release. 2012;161(3):735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Menegatti S, Zakrewsky M, Kumar S, De Oliveira JS, Muraski JA, Mitragotri S. De novo design of skin-penetrating peptides for enhanced transdermal delivery of peptide drugs. Adv Healthc Mater. 2016;5(5):602–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wang K, Zhao X, Yang F, Liu P, Xing J. Percutaneous delivery application of acylated steric acid-9-P(arginine) cell penetrating peptides used as transdermal penetration enhancer(+). J Biomed Nanotechnol. 2019;15(3):417–30.

    Article  CAS  PubMed  Google Scholar 

  34. Gao S, Tian B, Han J, Zhang J, Shi Y, Lv Q, et al. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. Int J Nanomedicine. 2019;14:6135–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohammed Y, Teixido M, Namjoshi S, Giralt E, Benson H. Cyclic dipeptide shuttles as a novel skin penetration enhancement approach: preliminary evaluation with diclofenac. PLoS One. 2016;11(8):e0160973.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cohen-Avrahami M, Libster D, Aserin A, Garti N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: physical characterization and delivery. J Phys Chem B. 2011;115(34):10189–97.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen-Avrahami M, Shames AI, Ottaviani MF, Aserin A, Garti N. HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. J Phys Chem B. 2014;118(23):6277–87.

    Article  CAS  PubMed  Google Scholar 

  38. Manosroi J, Lohcharoenkal W, Gotz F, Werner RG, Manosroi W, Manosroi A. Transdermal absorption and stability enhancement of salmon calcitonin by Tat peptide. Drug Dev Ind Pharm. 2013;39(4):520–5.

    Article  CAS  PubMed  Google Scholar 

  39. Vij M, Natarajan P, Pattnaik BR, Alam S, Gupta N, Santhiya D, et al. Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. J Control Release. 2016;222:159–68.

    Article  CAS  PubMed  Google Scholar 

  40. Manosroi J, Khositsuntiwong N, Manosroi W, Gotz F, Werner RG, Manosroi A. Potent enhancement of transdermal absorption and stability of human tyrosinase plasmid (pAH7/Tyr) by Tat peptide and an entrapment in elastic cationic niosomes. Drug Deliv. 2013;20(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci U S A. 2011;108(38):15816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ookubo N, Michiue H, Kitamatsu M, Kamamura M, Nishiki T, Ohmori I, et al. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials. 2014;35(15):4508–16.

    Article  CAS  PubMed  Google Scholar 

  43. Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. Biochim Biophys Acta, Proteins Proteomics. 2021;1869(4):140604.

    Article  CAS  PubMed  Google Scholar 

  44. Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev. 2008;60(4-5):473–84.

    Article  CAS  PubMed  Google Scholar 

  45. Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel). 2012;5(11):1177–209.

    Article  CAS  Google Scholar 

  46. Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal-Aizman K, et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem. 2005;345(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  47. Jauset T, Beaulieu ME. Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead. Curr Opin Pharmacol. 2019;47:133–40.

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, et al. Curb challenges of the "Trojan Horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev. 2013;65(10):1299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pereira R, Silva SG, Pinheiro M, Reis S, Vale MLD. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes (Basel). 2021;11(5):343. https://doi.org/10.3390/membranes11050343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this project’s conceptualization, writing, revision, and approval.

Corresponding author

Correspondence to Lipika Chablani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Funding Statement

The authors did not receive support from any organization for the submitted work.

Additional information

Guest Editors: Jayachandra Babu Ramapuram and Ashana Puri

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chablani, L., Singh, V. Cell-Penetrating Peptides as Passive Permeation Enhancers for Transdermal Drug Delivery. AAPS PharmSciTech 23, 266 (2022). https://doi.org/10.1208/s12249-022-02424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02424-4

Keywords

Navigation