Skip to main content

Advertisement

Log in

Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance

  • Mini-Review
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2015 American Chemical Society)

Fig. 2

Copyright © 2021 Elsevier)

Fig. 3

Copyright © 2018 American Chemical Society)

Fig. 4

(Adapted from Ref. 51 with the permission of the American Chemical Society)

Fig. 5

(Copyright © 2019 Elsevier)

Fig. 6

(Copyright © 2020 Elsevier)

Fig. 7

(Copyright © 2022 American Chemical Society))

Similar content being viewed by others

References

  1. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shi Q, Li F, Yeh S, Wang Y, Xin J. Physical stability of amorphous pharmaceutical solids: nucleation, crystal growth, phase separation and effects of the polymers. Int J Pharm. 2020;590:119925.

    Article  CAS  PubMed  Google Scholar 

  3. Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent advances in enhancement of dissolution and supersaturation of poorly water-soluble drug in amorphous pharmaceutical solids: a review. AAPS PharmSciTech. 2021;23:16.

    Article  PubMed  Google Scholar 

  4. Shi Q, Zhang C, Su Y, Zhang J, Zhou D, Cai T. Acceleration of crystal growth of amorphous griseofulvin by low-concentration poly(ethylene oxide): aspects of crystallization kinetics and molecular mobility. Mol Pharm. 2017;14:2262–72.

    Article  CAS  PubMed  Google Scholar 

  5. Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm. 2021;602:120649.

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Grohganz H, Lobmann K, Rades T, Hempel NJ. Co-amorphous drug formulations in numbers: recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics. 2021;13:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019;9:19–35.

    Article  PubMed  Google Scholar 

  8. Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017;18:2279–90.

    Article  CAS  PubMed  Google Scholar 

  9. Bahetibieke S, Moinuddin SM, Baiyisaiti A, Liu X, Zhang J, Liu G, Shi Q, Peng A, Tao J, Di C, Cai T, Qi R. Co-amorphous formation of simvastatin-ezetimibe: enhanced physical stability, bioavailability and cholesterol-lowering effects in LDLr-/-Mice. Pharmaceutics. 2022;14:1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dengale SJ, Grohganz H, Rades T, Lobmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116–25.

    Article  CAS  PubMed  Google Scholar 

  11. Chmiel K, Knapik-Kowalczuk J, Jurkiewicz K, Sawicki W, Jachowicz R, Paluch M. A new method to identify physically stable concentration of amorphous solid dispersions (I): case of flutamide + kollidon VA64. Mol Pharm. 2017;14:3370–80.

    Article  CAS  PubMed  Google Scholar 

  12. Knapik-Kowalczuk J, Tu W, Chmiel K, Rams-Baron M, Paluch M. Co-stabilization of amorphous pharmaceuticals-the case of nifedipine and nimodipine. Mol Pharm. 2018;15:2455–65.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda H, Kadota K, Imono M, Ito T, Kunita A, Tozuka Y. Co-amorphous formation induced by combination of tranilast and diphenhydramine hydrochloride. J Pharm Sci. 2017;106:123–8.

    Article  CAS  PubMed  Google Scholar 

  14. Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev. 2016;100:158–82.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang Y, Cheng J, Chen H, Xu J, Liu Z, Shi Q, Zhang C. Recent advances in the application of characterization techniques for studying physical stability of amorphous pharmaceutical solids. Curr Comput-Aided Drug Des. 2021;11:1440.

    CAS  Google Scholar 

  16. Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide Mixtures. Mol Pharm. 2015;12:3610–9.

    Article  CAS  PubMed  Google Scholar 

  17. Fung MH, DeVault M, Kuwata KT, Suryanarayanan R. Drug-excipient interactions: effect on molecular mobility and physical stability of ketoconazole-organic acid coamorphous systems. Mol Pharm. 2018;15:1052–61.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Shi Q, Qu T, Zhou D, Cai T. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs. Int J Pharm. 2021;610:121235.

    Article  CAS  PubMed  Google Scholar 

  19. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, Keng PS. Molecular dynamics and physical stability of pharmaceutical co-amorphous systems: correlation between structural relaxation times measured by Kohlrausch-Williams-Watts with the width of the glass transition temperature (DeltaTg) and the onset of crystallization. J Pharm Sci. 2019;108:3848–58.

    Article  PubMed  Google Scholar 

  20. Madejczyk O, Kaminska E, Tarnacka M, Dulski M, Jurkiewicz K, Kaminski K, Paluch M. Studying the crystallization of various polymorphic forms of nifedipine from binary mixtures with the use of different experimental techniques. Mol Pharm. 2017;14:2116–25.

    Article  CAS  PubMed  Google Scholar 

  21. Kissi EO, Kasten G, Lobmann K, Rades T, Grohganz H. The role of glass transition temperatures in coamorphous drug-amino acid formulations. Mol Pharm. 2018;15:4247–56.

    Article  CAS  PubMed  Google Scholar 

  22. Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, Cai T. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017;532:393–400.

    Article  CAS  PubMed  Google Scholar 

  23. Wu W, Ueda H, Lobmann K, Rades T, Grohganz H. Organic acids as co-formers for Co-amorphous systems - influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur J Pharm Biopharm. 2018;131:25–32.

    Article  CAS  PubMed  Google Scholar 

  24. Beyer A, Grohganz H, Lobmann K, Rades T, Leopold CS. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin. Eur J Pharm Biopharm. 2016;109:140–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Rades T, Grohganz H. Determination of the optimal molar ratio in amino acid-based coamorphous systems. Mol Pharm. 2020;17:1335–42.

    Article  CAS  PubMed  Google Scholar 

  26. Knapik-Kowalczuk J, Kramarczyk D, Jurkiewicz K, Chmiel K, Paluch M. Ternary eutectic ezetimibe-simvastatin-fenofibrate system and the physical stability of its amorphous form. Mol Pharm. 2021;18:3588–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pacult J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci. 2019;136:104947.

    Article  CAS  PubMed  Google Scholar 

  28. Budiman A, Higashi K, Ueda K, Moribe K. Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int J Pharm. 2021;600:120492.

    Article  CAS  PubMed  Google Scholar 

  29. Newman A, Zografi G. What are the important factors that influence API crystallization in miscible amorphous API-excipient mixtures during long-term storage in the glassy state? Mol Pharm. 2022;19:378–91.

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Hu Y, Guo Y, Xu R, Fang X, Xiao X, Jiang C, Lu S. Coamorphous system of florfenicol-oxymatrine for improving the solubility and dissolution rate of florfenicol: preparation, characterization and molecular dynamics simulation. J Pharm Sci. 2021;110:2544–54.

    Article  CAS  PubMed  Google Scholar 

  31. Pang W, Lv J, Du S, Wang J, Wang J, Zeng Y. Preparation of curcumin-piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin. Mol Pharm. 2017;14:3013–24.

    Article  CAS  PubMed  Google Scholar 

  32. Moinuddin SM, Shi Q, Tao J, Guo M, Zhang J, Xue Q, Ruan S, Cai T. Enhanced physical stability and synchronized release of febuxostat and indomethacin in coamorphous solids. AAPS PharmSciTech. 2020;21:41.

    Article  CAS  PubMed  Google Scholar 

  33. Alleso M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136:45–53.

    Article  PubMed  Google Scholar 

  34. Lobmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8:1919–28.

    Article  CAS  PubMed  Google Scholar 

  35. Kasten G, Nouri K, Grohganz H, Rades T, Löbmann K. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. Int J Pharm. 2017;533:138–44.

    Article  CAS  PubMed  Google Scholar 

  36. Kasten G, Lobo L, Dengale S, Grohganz H, Rades T, Löbmann K. In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine. Eur J Pharm Biopharm. 2018;132:192–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wu W, Hiroshi U, Korbinian L, Thomas R, Holger G. Organic acids as co-formers for co-amorphous systems – influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur J Pharm Biopharm. 2018;131:25–32.

    Article  CAS  PubMed  Google Scholar 

  38. Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharm. 2017;532:289–98.

    Article  CAS  PubMed  Google Scholar 

  39. Kasten G, Lobmann K, Grohganz H, Rades T. Co-former selection for co-amorphous drug-amino acid formulations. Int J Pharm. 2019;557:366–73.

    Article  CAS  PubMed  Google Scholar 

  40. Mishra J, Löbmann K, Grohganz H, Rades T. Influence of preparation technique on co-amorphization of carvedilol with acidic amino acids. Int J Pharm. 2018;552:407–13.

    Article  CAS  PubMed  Google Scholar 

  41. Jensen KT, Larsen FH, Cornett C, Lobmann K, Grohganz H, Rades T. Formation mechanism of coamorphous drug-amino acid mixtures. Mol Pharm. 2015;12:2484–92.

    Article  CAS  PubMed  Google Scholar 

  42. Pajula K, Wittoek L, Lehto VP, Ketolainen J, Korhonen O. Phase separation in coamorphous systems: in silico prediction and the experimental challenge of detection. Mol Pharm. 2014;11:2271–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kilpelainen T, Pajula K, Ervasti T, Uurasjarvi E, Koistinen A, Korhonen O. Raman imaging of amorphous-amorphous phase separation in small molecule co-amorphous systems. Eur J Pharm Biopharm. 2020;155:49–54.

    Article  CAS  PubMed  Google Scholar 

  44. Pajula K, Hyyrylainen J, Koistinen A, Leskinen JTT, Korhonen O. Detection of amorphous-amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS. Eur J Pharm Biopharm. 2020;150:43–9.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  PubMed  Google Scholar 

  46. Jensen KT, Blaabjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P, Rades T, Lobmann K. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts. J Pharm Pharmacol. 2016;68:615–24.

    Article  CAS  PubMed  Google Scholar 

  47. Hu Y, Guo Y, Li B, Xu R, Fang X, Cao Y, Liu Z, Jiang C, Lu S. Influence of the pK a value of cinnamic acid and P-hydroxycinnamic acid on the solubility of a lurasidone hydrochloride-based coamorphous system. ACS Omega. 2021;6:3106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen X, Li D, Zhang H, Duan Y, Huang Y. Sinomenine-phenolic acid coamorphous drug systems: solubilization, sustained release, and improved physical stability. Int J Pharm. 2021;598:120389.

    Article  CAS  PubMed  Google Scholar 

  49. Pokharkar VB, Mandpe LP, Padamwar MN, Ambile AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Tech. 2006;167:20–5.

    Article  CAS  Google Scholar 

  50. Qian S, Li Z, Heng W, Liang S, Ma D, Gao Y, Zhang J, Wei Y. Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. Rsc Adv. 2016;6:106396–412.

    Article  CAS  Google Scholar 

  51. Heng W, Su M, Cheng H, Shen P, Liang S, Zhang L, Wei Y, Gao Y, Zhang J, Qian S. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Mol Pharm. 2020;17:84–97.

    Article  CAS  PubMed  Google Scholar 

  52. Fung MH, Berzins K, Suryanarayanan R. Physical stability and dissolution behavior of ketoconazole-organic acid coamorphous systems. Mol Pharm. 2018;15:1862–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hu Y, Jiang C, Li B, Zhou L, Xu R, Guo Y, Cao Y, Cao G, Lu S. A Novel lurasidone hydrochloride–shikimic acid co-amorphous system formed by hydrogen-bonding interaction with the retained pH-dependent solubility behavior. CrystEngComm. 2020;22:5841–53.

    Article  CAS  Google Scholar 

  54. Wang S, Heng W, Wang X, He X, Zhang Z, Wei Y, Zhang J, Gao Y, Qian S. Coamorphization combined with complexation enhances dissolution of lurasidone hydrochloride and puerarin with synchronized release. Int J Pharm. 2020;588:119793.

    Article  CAS  PubMed  Google Scholar 

  55. Hatanaka Y, Uchiyama H, Kadota K, Tozuka Y. Improved solubility and permeability of both nifedipine and ketoconazole based on coamorphous formation with simultaneous dissolution behavior. J Drug Deliv Sci Tech. 2021;65:102715.

    Article  CAS  Google Scholar 

  56. Qian S, Heng W, Wei Y, Zhang J, Gao Y. Coamorphous lurasidone hydrochloride–saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Cryst Growth Des. 2015;15:2920–8.

    Article  CAS  Google Scholar 

  57. Skieneh JM, Sathisaran I, Dalvi SV, Rohani S. Co-amorphous form of curcumin-folic acid dihydrate with increased dissolution rate. Cryst Growth Des. 2017;17:6273–80.

    Article  CAS  Google Scholar 

  58. Ojarinta R, Heikkinen AT, Sievanen E, Laitinen R. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: the ability of amino acids to stabilize the supersaturated state of indomethacin. Eur J Pharm Biopharm. 2017;112:85–95.

    Article  CAS  PubMed  Google Scholar 

  59. Paluch KJ, McCabe T, Muller-Bunz H, Corrigan OI, Healy AM, Tajber L. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol Pharm. 2013;10:3640–54.

    Article  CAS  PubMed  Google Scholar 

  60. Ruponen M, Rusanen H, Laitinen R. Dissolution and permeability properties of co-amorphous formulations of hydrochlorothiazide. J Pharm Sci. 2020;109:2252–61.

    Article  CAS  PubMed  Google Scholar 

  61. Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R. Preparation and characterization of multicomponent tablets containing co-amorphous salts: combining multimodal non-linear optical imaging with established analytical methods. Eur J Pharm Biopharm. 2018;132:112–26.

    Article  CAS  PubMed  Google Scholar 

  62. Trasi NS, Taylor LS. Thermodynamics of highly supersaturated aqueous solutions of poorly water-soluble drugs-impact of a second drug on the solution phase behavior and implications for combination products. J Pharm Sci. 2015;104:2583–93.

    Article  CAS  PubMed  Google Scholar 

  63. Trasi NS, Taylor LS. Dissolution performance of binary amorphous drug combinations: impact of a second drug on the maximum achievable supersaturation. Int J Pharm. 2015;496:282–90.

    Article  CAS  PubMed  Google Scholar 

  64. Alhalaweh A, Bergstrom CAS, Taylor LS. Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations. J Control Release. 2016;229:172–82.

    Article  CAS  PubMed  Google Scholar 

  65. Li YW, Zhang HM, Cui BJ, Hao CY, Zhu HY, Guan J, Wang D, Jin Y, Feng B, Cai JH, Qi XR, Shi NQ. “Felodipine-indomethacin” co-amorphous supersaturating drug delivery systems: “spring-parachute” process, stability, in vivo bioavailability, and underlying molecular mechanisms. Eur J Pharm Biopharm. 2021;166:111–25.

    Article  CAS  PubMed  Google Scholar 

  66. Yu D, Kan Z, Shan F, Zang J, Zhou J. Triple strategies to improve oral bioavailability by fabricating coamorphous forms of ursolic acid with piperine: enhancing water-solubility, permeability, and inhibiting cytochrome P450 isozymes. Mol Pharm. 2020;17:4443–62.

    Article  CAS  PubMed  Google Scholar 

  67. Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: a potential drug-drug interaction mechanism prediction. Eur J Pharm Sci. 2021;161:105773.

    Article  CAS  PubMed  Google Scholar 

  68. Wei Y, Zhou S, Hao T, Zhang J, Gao Y, Qian S. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci. 2019;129:21–30.

    Article  CAS  PubMed  Google Scholar 

  69. Wang R, Han J, Jiang A, Huang R, Fu T, Wang L, Zheng Q, Li W, Li J. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int J Pharm. 2019;561:9–18.

    Article  CAS  PubMed  Google Scholar 

  70. Bohr A, Nascimento TL, Harmankaya N, Weisser JJ, Wang Y, Grohganz H, Rades T, Lobmann K. Efflux inhibitor bicalutamide increases oral bioavailability of the poorly soluble efflux substrate docetaxel in co-amorphous anti-cancer combination therapy. Molecules. 2019;24:266.

    Article  PubMed Central  Google Scholar 

  71. Nair A, Varma R, Gourishetti K, Bhat K, Dengale S. Influence of preparation methods on physicochemical and pharmacokinetic properties of co-amorphous formulations: the case of co-amorphous atorvastatin: Naringin. J Pharm Innov. 2019;15:365–79.

    Article  Google Scholar 

  72. Suresh K, Mannava MKC, Nangia A. A novel curcumin-artemisinin coamorphous solid: physical properties and pharmacokinetic profile. RSC Adv. 2014;4:58357–61.

    Article  CAS  Google Scholar 

  73. Dengale SJ, Hussen SS, Krishna BS, Musmade PB, Gautham Shenoy G, Bhat K. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin. Eur J Pharm Biopharm. 2015;89:329–38.

    Article  CAS  PubMed  Google Scholar 

  74. Teja A, Musmade PB, Khade AB, Dengale SJ. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in-vivo in-situ evaluation. Eur J Pharm Sci. 2015;78:234–44.

    Article  CAS  PubMed  Google Scholar 

  75. Lodagekar A, Chavan RB, Mannava MKC, Yadav B, Chella N, Nangia AK, Shastri NR. Coamorphous valsartan nifedipine system: preparation, characterization, in vitro and in vivo evaluation. Eur J Pharm Sci. 2019;139:105048.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Gao Y, Du X, Guan R, He Z, Liu H. Combining co-amorphous-based spray drying with inert carriers to achieve improved bioavailability and excellent downstream manufacturability. Pharmaceutics. 2020;12:1063.

    Article  CAS  PubMed Central  Google Scholar 

  77. Maher EM, Ali AM, Salem HF, Abdelrahman AA. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016;23:3088–100.

    Article  CAS  PubMed  Google Scholar 

  78. Shi X, Song S, Ding Z, Fan B, Huang W, Xu T. Improving the solubility, dissolution, and bioavailability of ibrutinib by preparing it in a coamorphous state with saccharin. J Pharm Sci. 2019;108:3020–8.

    Article  CAS  PubMed  Google Scholar 

  79. Park H, Jin Seo H, Hong SH, Ha ES, Lee S, Kim JS, Baek IH, Kim MS, Hwang SJ. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: influence of molar ratio and preparation methods. Int J Pharm. 2020;581:119232.

    Article  CAS  PubMed  Google Scholar 

  80. Mannava MKC, Suresh K, Kumar Bommaka M, Bhavani Konga D, Nangia A. Curcumin-artemisinin coamorphous solid: xenograft model preclinical study. Pharmaceutics. 2018;10:7.

    Article  PubMed Central  Google Scholar 

  81. Sai Krishna Anand V, Sakhare SD, Navya Sree KS, Nair AR, Raghava Varma K, Gourishetti K, Dengale SJ. The relevance of co-amorphous formulations to develop supersaturated dosage forms: in-vitro, and ex-vivo investigation of ritonavir-lopinavir co-amorphous materials. Eur J Pharm Sci. 2018;123:124–34.

    Article  CAS  PubMed  Google Scholar 

  82. Liu J, Grohganz H, Rades T. Influence of polymer addition on the amorphization, dissolution and physical stability of co-amorphous systems. Int J Pharm. 2020;588:119768.

    Article  CAS  PubMed  Google Scholar 

  83. Veith H, Wiechert F, Luebbert C, Sadowski G. Combining crystalline and polymeric excipients in API solid dispersions - opportunity or risk? Eur J Pharm Biopharm. 2021;158:323–35.

    Article  CAS  PubMed  Google Scholar 

  84. Liu J, Hwu E, Bannow J, Grohganz H, Rades T. Impact of molecular surface diffusion on the physical stability of co-amorphous systems. Mol Pharm. 2022;19(4):1183–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for financial support of this work by the National Natural Science Foundation of China (No. 81803452), the Natural Science Foundation of Jiangsu Province (No. BK20211114), Natural Science Foundation in Colleges of Jiangsu Province (No. 21KJB350016), and the National Subject Cultivation Project of Jiangsu Vocational College of Medicine (No. 20204304).

Author information

Authors and Affiliations

Authors

Contributions

Qin Shi: conceptualization, investigation, writing—original draft, writing—review and editing, funding acquisition; Yanan Wang: conceptualization, writing—original draft, writing—review and editing; Sakib M. Moinuddin: conceptualization, writing—review and editing; Xiaodong Feng: writing—review and editing; Fakhrul Ahsan: conceptualization, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Qin Shi or Fakhrul Ahsan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Wang, Y., Moinuddin, S.M. et al. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 23, 259 (2022). https://doi.org/10.1208/s12249-022-02421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02421-7

Keywords

Navigation