Skip to main content

Advertisement

Log in

Formulating Ternary Inclusion Complex of Sorafenib Tosylate Using β-Cyclodextrin and Hydrophilic Polymers: Physicochemical Characterization and In Vitro Assessment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Sorafenib tosylate (SFNT) is the first-line drug for hepatocellular carcinoma. It exhibits poor solubility leading to low oral bioavailability subsequently requiring intake of large quantities of drug to exhibit desired efficacy. The present investigation was aimed at enhancing the solubility and dissolution rate of SFNT using complexation method. The binary inclusion complex was prepared with β-cyclodextrin (β-CD). The molecular docking studies confirmed the hosting of SFNT into hydrophobic cavity of β-CD, while the phase solubility studies revealed the stoichiometry of complexation with a stability constant of 735.8 M−1. The ternary complex was prepared by combining the SFNT-β-CD complex with PEG-6000 and HPMC polymers. The results from ATR-IR studies revealed no interaction between drug and excipients. The decreased intensities in ATR-IR peaks and changes in chemical shifts from NMR of SFNT in complexes indicate the possibility of SFNT hosting into the hydrophobic cavity of β-CD. The disappearance of SFNT peak in DSC and XRD studies revealed the amorphization upon complexation. The ternary complexes exhibited improved in vitro solubility (17.54 µg/mL) compared to pure SFNT (0.19 µg/mL) and binary inclusion complex (1.52 µg/mL). The dissolution profile of ternary inclusion complex in 0.1 N HCl was significantly higher compared to binary inclusion complex and pure drug. In cytotoxicity studies, the ternary inclusion complex has shown remarkable effect than the binary inclusion complex and pure drug on HepG2 cell lines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SFNT:

Sorafenib tosylate

β-CD:

Beta-cyclodextrin

HPMC:

Hydroxypropyl methyl cellulose

ATR-IR:

Attenuated total reflection infrared spectroscopy

NMR:

Nuclear magnetic resonance spectroscopy

DMEM:

Dulbecco’s Modified Eagle’s Medium high glucose

FBS:

Fetal bovine serum

References

  1. Keating GM. Sorafenib: a review in hepatocellular carcinoma. Target Oncol. 2017;12:243–53.

    Article  Google Scholar 

  2. Nexavar | European Medicines Agency [Internet]. [cited 2019 May 10]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/nexavar

  3. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, et al. Improving oral bioavailability of sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm American Chemical Society. 2016;13:599–608.

    Article  CAS  Google Scholar 

  4. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm Hindawi. 2012;2012:1–10.

    Google Scholar 

  5. Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng L Bin, Patnaik S. Fabrication of second generation smarter PLGA based nanocrystal carriers for improvement of drug delivery and therapeutic efficacy of gliclazide in type-2 diabetes rat model. Sci Rep 2019 91. Nature Publishing Group; 2019;9:1–15.

  6. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci Elsevier. 2014;9:304–16.

    Google Scholar 

  7. Bera H, Chekuri S, Sarkar S, Kumar S, Muvva NB, Mothe S, et al. Novel pimozide-β-cyclodextrin-polyvinylpyrrolidone inclusion complexes for Tourette syndrome treatment. J Mol Liq Elsevier. 2016;215:135–43.

    Article  CAS  Google Scholar 

  8. Pu H, Sun Q, Tang P, Zhao L, Li Q, Liu Y, et al. Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with β-cyclodextrin and its derivatives. Food Chem; 2018.

  9. Srivalli KMR, Mishra B. Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with hydroxypropyl-β-cyclodextrin and hydrophilic auxiliary substances. AAPS PharmSciTech. 2016;17:272–83.

    Article  CAS  Google Scholar 

  10. Di Cagno MP. The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Mol J Synth Chem Nat Prod Chem. Multidisciplinary Digital Publishing Institute (MDPI); 2017;22.

  11. Giglio V, Viale M, Bertone V, Maric I, Vaccarone R, Vecchio G. Cyclodextrin polymers as nanocarriers for sorafenib. Invest New Drugs. 2018;36:370–9.

    Article  CAS  Google Scholar 

  12. Hashemi F, Tamaddon A, … GY-R in, 2012 undefined. Effect of PH on the solubility of practically insoluble sorafenib by comparing polyamidoamine (PAMAM) dendrimers with β-cyclodextri. rps.mui.ac.ir.

  13. Vieira ACC, Ferreira Fontes DA, Chaves LL, Alves LDS, de Freitas Neto JL, de La Roca Soares MF, et al. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydr Polym. 2015;130:133–40.

    Article  CAS  Google Scholar 

  14. Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as excipients in tablet formulations. Drug Discov Today Elsevier Current Trends. 2018;23:1274–84.

    Article  Google Scholar 

  15. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. John Wiley & Sons, Ltd; 2010;62:1607–21.

  16. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  CAS  Google Scholar 

  17. Loftsson T, Frikdriksdóttir H, Sigurkdardóttir AM, Ueda H. The effect of water-soluble polymers on drugcyclodextrin complexation. Int J Pharm. 1994;110:169–77.

    Article  CAS  Google Scholar 

  18. Radalla AM. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions. Beni-Suef Univ J Basic Appl Sci. 2015;4:174–82.

    Google Scholar 

  19. Jadhav P, Petkar B, Pore Y, Kulkarni A, Burade K. Physicochemical and molecular modeling studies of cefixime-l-arginine- cyclodextrin ternary inclusion compounds. Carbohydr Polym. 2013;98:1317–25.

    Article  CAS  Google Scholar 

  20. Ribeiro L, Loftsson T, Ferreira D, Veiga F. Investigation and Physicochemical characterization of vinpocetine-sulfobutyl ether β-cyclodextrin binary and ternary complexes. Chem Pharm Bull (Tokyo). The Pharmaceutical Society of Japan; 2003;51:914–22.

  21. Aiassa V, Garnero C, Longhi MR, Zoppi A. Cyclodextrin multicomponent complexes: Pharmaceutical applications. Pharmaceutics. 2021;13:1099.

    Article  CAS  Google Scholar 

  22. Kalaichelvi R, Jayachandran E. Quantitative estimation of sorafenib tosylate its pure form and in its tablet formulation by RP-HPLC method. J Chem Hindawi. 2013;2013:1–3.

    Article  Google Scholar 

  23. Misra A, Sharma S, Sharma D, Dubey S, Mishra A, Kishore D, et al. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J Chem Sci. Springer; 2018;130:31.

  24. Misra A, Kishore D, Verma VP, Dubey S, Chander S, Gupta N, et al. Synthesis, biological evaluation and molecular docking of pyrimidine and quinazoline derivatives of 1,5-benzodiazepine as potential anticancer agents. J King Saud Univ - Sci. Elsevier; 2020;32:1486–95.

  25. Wang D, Li H, Gu J, Guo T, Yang S, Guo Z, et al. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: Simultaneous enhancement of drug solubility and stability in aqueous solutions. J Pharm Biomed Anal. 2013;83:141–8.

    Article  CAS  Google Scholar 

  26. Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. Elsevier; 2013;453:167–80.

  27. Patel P, Agrawal YK, Sarvaiya J. Cyclodextrin based ternary system of modafinil: Effect of trimethyl chitosan and polyvinylpyrrolidone as complexing agents. Int J Biol Macromol. 2016;84:182–8.

    Article  CAS  Google Scholar 

  28. Mendes C, Buttchevitz A, Barison A, Ocampos FMM, Bernardi LS, Oliveira PR, et al. Investigation of β-cyclodextrin-norfloxacin inclusion complexes. Part 2. Inclusion mode and stability studies. Expert Rev Anti Infect Ther;2015.

  29. Phan C, Zheng Z, Wang J, Wang Q, Hu X, Tang G, et al. Enhanced antitumour effect for hepatocellular carcinoma in the advanced stage using a cyclodextrin-sorafenib-chaperoned inclusion complex. Biomater Sci. The Royal Society of Chemistry; 2019;7:4758–68.

  30. Donthi MR, Dudhipala NR, Komalla DR, Suram D, Banala N. Preparation and evaluation of fixed combination of ketoprofen enteric coated and famotidine floating mini tablets by single unit encapsulation system. J Bioequivalence Bioavailab. Longdom Publishing SL; 2015;07:1–5.

  31. B A, D N, Veerabrahma K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artif Cells Nanomedicine Biotechnol. Artif Cells Nanomed Biotechnol; 2018;46:126–37.

  32. Krishna KV, Wadhwa G, Alexander A, Kanojia N, Saha RN, Kukreti R, et al. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci American Chemical Society. 2019;10:4124–35.

    Article  CAS  Google Scholar 

  33. Fda, Cder. Contains Nonbinding Recommendations Draft Guidance on Sorafenib Tosylate; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021923_s000_Nexavar_BioPharmR.pdf.

  34. Geng Q, Li T, Wang X, Chu W, Cai M, Xie J, et al. The mechanism of bensulfuron-methyl complexation with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and effect on soil adsorption and bio-activity. Sci Rep. Nature Publishing Group; 2019;9:1882.

  35. Mady FM, Aly UF. Experimental, molecular docking investigations and bioavailability study on the inclusion complexes of finasteride and cyclodextrins. Drug Des Devel Ther. 2017;11:1681.

    Article  CAS  Google Scholar 

  36. Kurkov S V., Ukhatskaya E V., Loftsson T. Drug/cyclodextrin: beyond inclusion complexation. J Incl Phenom Macrocycl Chem. Springer Netherlands; 2011;69:297–301.

  37. Loftsson T, Hreinsdóttir D, Másson M. The complexation efficiency. J Incl Phenom Macrocycl Chem. 2007;57:545–52.

    Article  CAS  Google Scholar 

  38. Bian H, Chen J, Cai X, Liu P, Liu H, Qiao X, et al. Inclusion complex of butachlor with β-cyclodextrin: Characterization, solubility, and speciation-dependent adsorption. J Agric Food Chem. 2009;57:7453–8.

    Article  CAS  Google Scholar 

  39. Bhati LK, Tiwari G, Tiwari R, Kumar V. Enhancement of complexation efficiency of Meloxicam using binary and ternary solid systems: Formulation considerations. Am J Drug Discov Dev. 2012;2:17–31.

    Article  CAS  Google Scholar 

  40. Jadhav P, Pore Y. Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bull Fac Pharm Cairo Univ. No longer published by Elsevier; 2017;55:147–54.

  41. Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35:4565–72.

    Article  CAS  Google Scholar 

  42. Mahindrakar JN, Patil YS, Salunkhe PH, Ankushrao SS, Kadam VN, Ubale VP, et al. Optically transparent, organosoluble poly(ether-amide)s bearing triptycene unit; synthesis and characterization. J Macromol Sci Part A. Taylor & Francis; 2018;55:658–67.

  43. Sambasevam KP, Mohamad S, Sarih NM, Ismail NA. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci. 2013;14:3671–82.

    Article  CAS  Google Scholar 

  44. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech Springer. 2013;14:1303–12.

    Article  CAS  Google Scholar 

  45. Valizadeh H, Nokhodchi A, Qarakhani N, Zakeri-Milani P, Azarmi S, Hassanzadeh D, et al. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev Ind Pharm. 2004;30:303–17.

    Article  CAS  Google Scholar 

  46. Akinosho H, Hawkins S, Wicker L. Hydroxypropyl methylcellulose substituent analysis and rheological properties. Carbohydr Polym. 2013;98:276–81.

    Article  CAS  Google Scholar 

  47. Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, et al. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res. Taylor & Francis; 2020;1–11.

  48. Truong DH, Tran TH, Ramasamy T, Choi JY, Choi H-G, Yong CS, et al. Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol Elsevier. 2015;283:260–5.

    Article  CAS  Google Scholar 

  49. Fatmi S, Bournine L, Iguer-Ouada M, Lahiani-Skiba M, Bouchal F, Skiba M. Amorphous solid dispersion studies of camptothecin-cyclodextrin inclusion complexes in PEG 6000. Acta Pol Pharm Acta Pol Pharm. 2015;72:179–92.

    PubMed  Google Scholar 

  50. Grunenberg A, Lenz J. Thermodynamically stable form of bay 43–9006 TOSYLATE; 2006.

  51. Oh CM, Heng PWS, Chan LW. Influence of Hydroxypropyl Methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on metronidazole release. AAPS PharmSciTech Springer. 2015;16:1357–67.

    Article  CAS  Google Scholar 

  52. Sami F, Philip B, Pathak K. Effect of auxiliary substances on complexation efficiency and intrinsic dissolution rate of gemfibrozil–β-CD complexes. AAPS PharmSciTech; 2010.

  53. Karri V, Butreddy A, Dudhipala N. Fabrication of efavirenz freeze dried nanocrystals: formulation, physicochemical characterization, <I>In Vitro</I> and <I>Ex Vivo</I>. Evaluation Adv Sci Eng Med. 2015;7:385–92.

    Article  CAS  Google Scholar 

  54. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res Off J Am Assoc Pharm Sci; 1994.

  55. Nogueiras-Nieto L, Sobarzo-Sánchez E, Gómez-Amoza JL, Otero-Espinar FJ. Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2012;80:585–95.

    Article  CAS  Google Scholar 

  56. Rezaei A, Nasirpour A. Evaluation of release kinetics and mechanisms of curcumin and curcumin-β-cyclodextrin inclusion complex incorporated in electrospun almond gum/PVA nanofibers in simulated saliva and simulated gastrointestinal conditions. BioNanoScience; 2019.

  57. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm; 2008.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Methodology, investigation, writing (original draft): Mahipal Reddy Donthi, Siva Ram Munnangi, and Kowthavarapu Venkata Krishna. Cell culture study: Sandhya Amol Marathe. Writing review, editing, and supervision: Ranendra Narayan Saha, Gautam Singhvi, and Sunil Kumar Dubey.

Corresponding author

Correspondence to Sunil Kumar Dubey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donthi, M.R., Munnangi, S.R., Krishna, K.V. et al. Formulating Ternary Inclusion Complex of Sorafenib Tosylate Using β-Cyclodextrin and Hydrophilic Polymers: Physicochemical Characterization and In Vitro Assessment. AAPS PharmSciTech 23, 254 (2022). https://doi.org/10.1208/s12249-022-02406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02406-6

Keywords

Navigation