Skip to main content

Advertisement

Log in

Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (− 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF–treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMB:

Amphotericin B

AMB-RIF co-loaded TF:

Amphotericin B and rifampicin co-loaded into transfersomes

AMB-RIF co-loaded TFG:

Amphotericin B and rifampicin co-loaded into transfersomal gel

EA:

Edge activator

FBS:

Fetal bovine serum

NaCh:

Sodium cholate

PDI:

Polydispersity index

DLS:

Dynamic light scattering

PDII:

Primary dermal irritation index

PL90G:

Phospholipon 90G

RIF:

Rifampicin

S80:

Span 80

TF:

Transfersomes

Stratum corneum:

SC

References

  1. Sundar S, Chakravarty J, Meena LP. Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opin Orphan Drugs. 2019;7(1):1–10.

    Article  CAS  Google Scholar 

  2. Karimkhani C, Wanga V, Coffeng LE, Naghavi P, Dellavalle RP, Naghavi M. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;16(5):584–91.

    Article  PubMed  Google Scholar 

  3. Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rabia S, Khaleeq N, Batool S, Dar MJ, Kim DW, Din F-U, et al. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: passive targeting via topical route. 2020;15(2):183–203.

    CAS  Google Scholar 

  5. Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for antileishmanial impediments- a detail insight, J Nanobiotechnol, 2021;19 (106).

  6. Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen J-A, Sundar S. Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis. 2005;5(12):763–74.

    Article  PubMed  Google Scholar 

  7. Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother. 2019;20(10):1251–65.

    Article  CAS  PubMed  Google Scholar 

  8. Ammar AA, Nasereddin A, Ereqat S, Dan-Goor M, Jaffe CL, Zussman E, et al. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv Transl Res. 2019;9(1):76–84.

    Article  PubMed  Google Scholar 

  9. Kim J-H, Nam WS, Kim SJ, Kwon OK, Seung EJ, Jo JJ, et al. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in mice. Int J Mol Sci. 2017;18(7):1417.

    Article  PubMed Central  Google Scholar 

  10. He Y, Zhou L, Gao C, Han L, Xu Y. Rifampin enhances the activity of amphotericin B against Fusarium solani species complex and Aspergillus flavus species complex isolates from keratitis patients. Antimicrob Agents Chemother. 2017;61(4):e02069-e2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Del Pozo JL, Francés ML, Hernáez S, Serrera A, Alonso M, Rubio MF. Effect of amphotericin B alone or in combination with rifampicin or clarithromycin against Candida species biofilms. Int J Artif Organs. 2011;34(9):766–70.

    Article  PubMed  Google Scholar 

  12. Medoff G. Antifungal action of rifampin. Rev Infect Dis. 1983;5:S614–9.

    Article  CAS  PubMed  Google Scholar 

  13. Salim MW, Shabbir K, ud-Din F, Yousaf AM, Choi H-G, Khan GM. Preparation, in-vitro and in-vivo evaluation of rifampicin and vancomycin Co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol. 2020;60:101996.

  14. Khan AU, Jamshaid H, Zeb A, Din FU, Khan GM. Designing, optimization and characterization of Trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J Pharm Sci. 2022;111(6):1798–811.

    Article  CAS  PubMed  Google Scholar 

  15. Khan I, Apostolou M, Bnyan R, Houacine C, Elhissi A, Yousaf SS. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int J Pharm. 2020;575: 118919.

    Article  CAS  PubMed  Google Scholar 

  16. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. BBA-Biomembranes. 1992;1104(1):226–32.

    Article  CAS  PubMed  Google Scholar 

  17. Chaurasiya P, Ganju E, Upmanyu N, Ray SK, Jain P. Transfersomes: a novel technique for transdermal drug delivery. Journal of Drug Delivery and Therapeutics. 2019;9(1):279–85.

    Article  CAS  Google Scholar 

  18. Zeb, A., Arif, S.T., Malik, M., Shah, F.A., Din, FU., Qureshi, O.S., Lee, E.S., Lee, G. Y., Kim, JK. Potential of nanoparticulate carriers for improved drug delivery via skin .J Pharm Invest 2019;9,485–517.

  19. Carneiro G, Aguiar MG, Fernandes AP, Ferreira LAM. Drug delivery systems for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2012;9(9):1083–97.

    Article  CAS  PubMed  Google Scholar 

  20. Dar MJ, Din FU, Khan GM. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv. 2018;25(1):1595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dar MJ, Khalid S, McElroy CA, Satoskar AR. Khan GMJIJoP. Topical treatment of cutaneous leishmaniasis with novel amphotericin B-miltefosine co-incorporated second generation ultra-deformable liposomes. 2020;573: 118900.

    CAS  Google Scholar 

  23. El Zaafarany GM, Awad GA, Holayel SM. Mortada NDJIjop. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. 2010;397(1–2):164–72.

    Google Scholar 

  24. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. 2017;89:177–84.

  25. Shuwaili AHA, Rasool BKA. Abdulrasool AAJEJoP, biopharmaceutics. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. 2016;102:101–14.

    Google Scholar 

  26. Din FU, Mustapha O, Rashid R, Kim DW, Park JH, Ku SK, Oh YK, Kim JO, Youn YS, Yong CS, Choi HG. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Euro J Pharm Biophar. 2015;94:64–72.

    Article  Google Scholar 

  27. Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Hassan YA. Fathalla DJJoDDS, Technology. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. 2020;56: 101540.

    CAS  Google Scholar 

  28. Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019;563:293–303.

    Article  CAS  PubMed  Google Scholar 

  29. Chaubey P, Mishra B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohyd Polym. 2014;101:1101–8.

    Article  CAS  Google Scholar 

  30. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi pharmaceutical journal. 2012;20(4):355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Din FU, Rashid R, Mustapha O, Kim DW, Park JH, Ku SK, Kim JO, Youn YS, Yong CS, Choi HG. Development of a novel solid lipid nanoparticles loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Adv. 2015;5:43687–94.

    Article  CAS  Google Scholar 

  32. Din, FU, Zeb, Alam. Shah KU, Rehman ZU, Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Technol, 2019;51, 583–590.

  33. Salama A, Badran M, Elmowafy M, Soliman GM. Spironolactone-loaded leciplexes as potential topical delivery systems for female acne: In vitro appraisal and ex vivo skin permeability studies. Pharmaceutics. 2020;12(1):25.

    Article  CAS  Google Scholar 

  34. Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res. 2019;29(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  35. Mir-Palomo S, Nácher A, Díez-Sales O, Busó MOV, Caddeo C, Manca ML, et al. Inhibition of skin inflammation by baicalin ultradeformable vesicles. Int J Pharm. 2016;511(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Mahallawi AM, Fares AR, Abd-Elsalam WH. Enhanced permeation of methotrexate via loading into ultra-permeable niosomal vesicles: fabrication, statistical optimization, ex vivo studies, and in vivo skin deposition and tolerability. AAPS PharmSciTech. 2019;20(5):171.

    Article  PubMed  Google Scholar 

  37. Arora D, Nanda S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int J Pharm. 2019;567: 118448.

    Article  CAS  PubMed  Google Scholar 

  38. Draize JH. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  39. Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech. 2017;18(6):1960–71.

    Article  CAS  PubMed  Google Scholar 

  40. Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol. 2019;54: 101303.

    Article  CAS  Google Scholar 

  41. Fang JY, Hung CF, Chiu HC, Wang JJ, Chan TF. Efficacy and irritancy of enhancers on the in-vitro and in-vivo percutaneous absorption of curcumin. J Pharm Pharmacol. 2003;55(5):593–601.

    Article  CAS  PubMed  Google Scholar 

  42. Akinduti P, Motayo B, Idowu O, Isibor PO, Olasehinde G, Obafemi YD, et al., editors. Suitability of spectrophotometric assay for determination of honey microbial inhibition. Journal of Physics: Conference Series; 2019: IOP Publishing.

  43. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  44. Weinstein MP, Limbago B, Patel J, Mathers A, Campeau S, Mazzulli T, et al. M100 performance standards for antimicrobial susceptibility testing. Clinical & Laboratory Standards Institute. 2018.

  45. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. JoVE (Journal of Visualized Experiments). 2010;35: e1488.

    Google Scholar 

  46. Rios FJ, Touyz RM, Montezano AC. Isolation and differentiation of murine macrophages. Hypertension: Springer; 2017. p. 297–309.

  47. Datta A, Dasgupta S, Mukherjee S. Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding. J Nanopart Res. 2017;19(4):142.

    Article  Google Scholar 

  48. Tripathi P, Jaiswal AK, Dube A, Mishra PR. Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. Int J Biol Macromol. 2017;105:625–37.

  49. Cid-Barrio L, Bouzas-Ramos D, Salinas-Castillo A, Ogra Y, Encinar JR, Costa-Fernández JM. Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells. Journal of Analytical Atomic Spectrometry. 2020.

  50. Berenguer D, Alcover M, Sessa M, Halbaut L, Guillén C, Boix-Montañés A, et al. Topical amphotericin B semisolid dosage form for cutaneous leishmaniasis: physicochemical characterization, ex vivo skin permeation and biological activity. Pharmaceutics. 2020;12(2):149.

    Article  CAS  PubMed Central  Google Scholar 

  51. Sarwar HS, Ashraf S, Akhtar S, Sohail MF, Hussain SZ, Rafay M, et al. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine. 2018;13(1):25–41.

    Article  CAS  PubMed  Google Scholar 

  52. Dar MJ, McElroy CA, Khan MI, Satoskar AR, Khan GM. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv. 2020;17(1):97–110.

    Article  CAS  PubMed  Google Scholar 

  53. Luthfiah A, Sagita E, Iskandarsyah I. Physical stability testing of P-synephrine prepared as transfersome gel. International Journal of Applied Pharmaceutics. 2017;9:124–6.

    Article  CAS  Google Scholar 

  54. Batool S, Zahid F, Ud-Din F, Naz SS, Dar MJ, Khan MW, et al. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev Ind Pharm. 2021;47(3):440–53.

    Article  CAS  PubMed  Google Scholar 

  55. Guimarães ET, Santos LA, Ribeiro dos Santos R, Teixeira MM, dos Santos WL, Soares MB. Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice. Microbes Infect. 2006;8(5):1219–26.

  56. Radwan MA, AlQuadeib BT, Šiller L, Wright MC, Horrocks B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24(1):40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rezk AI, Unnithan AR, Park CH, Kim CS. Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chem Eng J. 2018;350:812–23.

    Article  CAS  Google Scholar 

  58. Hasan KMM, Tamanna N, Haque MA. Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Sci Human Wellness. 2018;7(1):77–82.

    Article  Google Scholar 

  59. Thammitiyagodage MG, de Silva NR, Rathnayake C, Karunakaran R, Wgss K, Gunatillka MM, et al. Biochemical and histopathological changes in Wistar rats after consumption of boiled and un-boiled water from high and low disease prevalent areas for chronic kidney disease of unknown etiology (CKDu) in north Central Province (NCP) and its comparison with low disease prevalent Colombo, Sri Lanka. BMC Nephrol. 2020;21(1):38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang H. Liposomes: methods and protocols. New York: Springer; 2017.

    Google Scholar 

  61. Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, et al. Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm. 2013;440(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  62. Jindal K, Chaudhary R, Singla A, Gangwal S, Khanna S. Effects of buffers and pH on rifampicin stability. Pharmazeutische Industrie. 1995;57(5):420–2.

    CAS  Google Scholar 

  63. Espuelas M, Legrand P, Irache J, Gamazo C, Orecchioni A, Devissaguet J-P, et al. Poly (ε-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int J Pharm. 1997;158(1):19–27.

    Article  CAS  Google Scholar 

  64. Šalplachta J, Horká M, Šlais K. Capillary electrophoresis with preparative isoelectric focusing preconcentration for sensitive determination of amphotericin B in human blood serum. Anal Chim Acta. 2019;1053:162–8.

    Article  PubMed  Google Scholar 

  65. Perez AP, Altube MJ, Schilrreff P, Apezteguia G, Celes FS, Zacchino S, et al. Topical amphotericin B in ultradeformable liposomes: formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces. 2016;139:190–8.

    Article  CAS  PubMed  Google Scholar 

  66. Singodia D, Gupta G, Verma A, Singh V, Shukla P, Misra P, et al. Development and performance evaluation of amphotericin B transfersomes against resistant and sensitive clinical isolates of visceral leishmaniasis. J Biomed Nanotechnol. 2010;6(3):293–302.

    Article  CAS  PubMed  Google Scholar 

  67. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24(1):61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tempone AG, Perez D, Rath S, Vilarinho AL, Mortara RA, de Andrade Jr HF. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J Antimicrob Chemother. 2004;54(1):60–8.

  69. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.

    Article  CAS  PubMed  Google Scholar 

  70. Al-Suwayeh SA, Taha EI, Al-Qahtani FM, Ahmed MO, Badran MM. Evaluation of skin permeation and analgesic activity effects of carbopol lornoxicam topical gels containing penetration enhancer. The Scientific World Journal. 2014;2014.

  71. Aiyalu R, Govindarjan A, Ramasamy A. Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Braz J Pharm Sci. 2016;52(3):493–507.

    Article  CAS  Google Scholar 

  72. Mushtaq, A., Baseer, A., Zaidi, S. S., Khan, M. W., Batool, S., Elahi, E., Aman, W., Muhammad Naeem M., & Din, FU. Fluconazole-loaded thermosensitive system: in vitro release, pharmacokinetics and safety study. J Drug Deliv. Sci. Technol. 2021;102972

  73. Sohrabi S, Haeri A, Mahboubi A, Mortazavi A. Dadashzadeh SJIjobm. Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. 2016;85:625–33.

    CAS  Google Scholar 

  74. Van Bocxlaer K, Yardley V, Murdan S, Croft SL. Drug permeation and barrier damage in Leishmania-infected mouse skin. J Antimicrob Chemother. 2016;71(6):1578–85.

    Article  PubMed  Google Scholar 

  75. Zheng Y, Ouyang W-Q, Wei Y-P, Syed SF, Hao C-S, Wang B-Z, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomed. 2016;11:5971.

    Article  CAS  Google Scholar 

  76. Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim H-S, Kim J-K. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomed. 2016;11:3813.

    Article  CAS  Google Scholar 

  77. Obata Y, Utsumi S, Watanabe H, Suda M, Tokudome Y, Otsuka M, et al. Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers. Int J Pharm. 2010;389(1–2):18–23.

    Article  CAS  PubMed  Google Scholar 

  78. Vaddi H, Ho P, Chan Y, Chan S. Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes. J Control Release. 2002;81(1–2):121–33.

    Article  CAS  PubMed  Google Scholar 

  79. Shaji J, Lal M. Novel double loaded transferosomes: evidence of superior anti-inflammatory efficacy-a comparative study. Int J Curr Pharm Res. 2014;6(2):16–25.

    Google Scholar 

  80. Sadeghian G, Ziaei H, Bidabadi LS, Baghbaderani AZ. Decreased effect of glucantime in cutaneous leishmaniasis complicated with secondary bacterial infection. Indian J Dermatol. 2011;56(1):37–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, et al. Cutaneous leishmaniasis induces a transmissible dysbiotic skin microbiota that promotes skin inflammation. Cell Host Microbe. 2017;22(1):13-24.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34.

    Article  CAS  PubMed  Google Scholar 

  83. Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep. 2018;5:1124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lian Y, Zhao J, Xu P, Wang Y, Zhao J, Jia L, et al. Protective effects of metallothionein on isoniazid and rifampicin-induced hepatotoxicity in mice. PLoS ONE. 2013;8(8): e72058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hetta HF, Ahmed EA, Hemdan AG, El-Deek HE, Abd-Elregal S, Abd Ellah NH. Modulation of rifampicin-induced hepatotoxicity using poly (lactic-co-glycolic acid) nanoparticles: a study on rat and cell culture models. Nanomedicine (Lond). 2020;15(14):1375–90.

    Article  CAS  Google Scholar 

  86. Bellocchio S, Gaziano R, Bozza S, Rossi G, Montagnoli C, Perruccio K, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother. 2005;55(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  87. van Etten EW, Otte-Lambillion M, van Vianen W, ten Kate MT, Bakker-Woudenberg AJ. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother. 1995;35(4):509–19.

    Article  PubMed  Google Scholar 

  88. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45(12):3487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD. Ratite oils for local transdermal therapy of 4-OH tamoxifen: development, characterization, and ex vivo evaluation. J Liposome Res. 2020:1–13.

Download references

Acknowledgements

The authors are thankful to Dr. Ihsan ul Haq, Quaid-i-Azam University, Islamabad, Pakistan, for providing technical and administrative help in conducting this research.

Funding

This research work was supported by the Higher Education Commission (HEC) of Pakistan under the National Research Support Program for Universities (NRPU) with a project No: 6171/Federal/ NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Contributions

Fatima Zahid: analysis, investigation, writing first draft.

Sibgha Batool: methodology, software, investigation

Fakhar Ud Din: idea, project administration, supervision, approval of the final draft

Zakir Ali: methodology, analysis, revising the draft

Muhammad Nabi: methodology, analysis, revising the draft

Salman Khan: data curation, resources, validation

Omer Salman: data curation, validation, interpretation

Gul Majid Khan: funding, project administration, supervision

Corresponding authors

Correspondence to Fakhar ud-Din or Gul Majid Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1578 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, F., Batool, S., ud-Din, F. et al. Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. AAPS PharmSciTech 23, 226 (2022). https://doi.org/10.1208/s12249-022-02384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02384-9

Keywords

Navigation