Skip to main content

Advertisement

Log in

β-Cyclodextrin-Grafted Chitosan Enhances Intestinal Drug Absorption and Its Preliminary Mechanism Exploration

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery: Delivery Throughout the Gastro-intestinal tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

β-Cyclodextrin (CD) and chitosan (CS) have attracted great attention due to their unique properties and structures. β-Cyclodextrin-grafted chitosan (CD-CS) has been widely used as a drug carrier to prepare nano-formulations for drug delivery. However, few researches have been conducted to investigate the effect of CD-CS as an excipient on cellular uptake and intestinal absorption. Herein, Caco-2 cells were used to investigate the influence of CD-CS on cellular uptake. The MTT assay showed that CD-CS was non-toxic to Caco-2 cells in concentrations ranging from 15.62 to 125 μg/mL. Confocal laser microscopy and flow cytometry measurements indicated that the uptake ability of Caco-2 cells was significantly enhanced after being treated with CD-CS at a concentration of 31.25 μg/mL or incubation for 0.5 h, and the uptake enhancement gradually increased with increasing CD-CS concentration and incubation time. The Caco-2 monolayer cell model and the everted intestinal sac method were employed to preliminarily explore the mechanism of the improved intestinal absorption. The results demonstrated that CD-CS might open the tight junctions and enhance the clathrin-dependent endocytosis, macro-pinocytosis, and phagocytosis of the intestinal epithelial cells. Such findings can serve as references and inspiration for the design of absorption enhancers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wacher VJ, Salphati L, Benet LZ. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv Drug Deliv Rev. 2001;46(1–3):89–102.

    Article  CAS  PubMed  Google Scholar 

  2. Padwal R, Brocks D, Sharma AM. A systematic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev. 2010;11(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  3. Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals. 2016;29(4):573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pifferi G, Santoro P, Pedrani M. Quality and functionality of excipients. Il Farmaco. 1999;54(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  5. Pangeni R, Kang S, Jha SK, Subedi L, Park JW. Intestinal membrane transporter-mediated approaches to improve oral drug delivery. Int J Pharm Investig. 2021;51(2):137–58.

    Article  CAS  Google Scholar 

  6. Chin YP, Raof SFA, Sinniah S, Lee VS, Mohamad S, Manan NSA. Inclusion complex of Alizarin Red S with β-cyclodextrin: synthesis, spectral, electrochemical and computational studies. J Mol Struct. 2015;1083:236–44.

    Article  CAS  Google Scholar 

  7. Barman BK, Barman S, Roy MN. Inclusion complexation between tetrabutylphosphonium methanesulfonate as guest and α-and β-cyclodextrin as hosts investigated by physicochemical methodology. J Mol Liq. 2018;264:80–7.

    Article  CAS  Google Scholar 

  8. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macro. 2008;62(1):23–42.

    Article  CAS  Google Scholar 

  9. Wang Z-C, Qin CQ, Zhang X, Wang Q, Li RX, Ren DF. Effect of whey protein isolate/chitosan/microcrystalline cellulose/PET multilayer bottles on the shelf life of rosebud beverages. Food Chem. 2021;347: 129006.

    Article  CAS  PubMed  Google Scholar 

  10. Falamarzpour P, Behzad T, Zamani A. Preparation of nanocellulose reinforced chitosan films, cross-linked by adipic acid. Int J Mol Sci. 2017;18(2):396.

    Article  PubMed Central  Google Scholar 

  11. Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, et al. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials. 2005;26(5):485–93.

    Article  CAS  PubMed  Google Scholar 

  12. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohydr Polym. 2010;82(2):227–32.

    Article  CAS  Google Scholar 

  13. Cardile V, Frasca G, Rizza L, Bonina F, Puglia C, Barge A, et al. Improved adhesion to mucosal cells of water-soluble chitosan tetraalkylammonium salts. Int J Pharm. 2008;362(1–2):88–92.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release. 2005;102(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  15. Ding WY, Zheng SD, Qin Y, Yu F, Bai JW, Cui WQ, et al. Chitosan grafted with β-cyclodextrin: synthesis, characterization, antimicrobial activity, and role as absorbefacient and solubilizer. Front Chem. 2019;6:657–71.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Daimon Y, Izawa H, Kawakami K, Żywicki P, Sakai H, Abe M, et al. Media-dependent morphology of supramolecular aggregates of β-cyclodextrin-grafted chitosan and insulin through multivalent interactions. J Mater Chem B. 2014;2(13):1802–12.

    Article  CAS  PubMed  Google Scholar 

  17. Takechi-Haraya Y, Tanaka K, Tsuji K, Asami Y, Izawa H, Shigenaga A, et al. Molecular complex composed of β-cyclodextrin-grafted chitosan and pH-sensitive amphipathic peptide for enhancing cellular cholesterol efflux under acidic pH. Bioconjug Chem. 2015;26(3):572–81.

    Article  CAS  PubMed  Google Scholar 

  18. Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, et al. Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym. 2012;89(2):623–31.

    Article  CAS  PubMed  Google Scholar 

  19. Izawa H, Haraya YT, Kawakami K. Cyclodextrin–grafted chitosans for pharmaceutical applications. Trends in Glycoscience and Glycotechnology. 2017;29(170):E93–8.

    Article  Google Scholar 

  20. Hou X, Zhang W, He M, Lu Y, Lou K, Gao F. Preparation and characterization of β-cyclodextrin grafted N-maleoyl chitosan nanoparticles for drug delivery. Asian J Pharm. 2017;12(6):558–68.

    Google Scholar 

  21. Campos EVR, Proença PLF, Oliveira JL, Pereira AES, de Morais Ribeiro LN, Fernandes FO, et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci Rep. 2018;8(1):1–14.

    Article  Google Scholar 

  22. Zheng SD, Zhang ZY, Ma JX, Qu QW, God’spowe BO, Qin Y, et al. CD-g-CS nanoparticles for enhanced antibiotic treatment of Staphylococcus xylosus infection. Microb Biotechnol. 2022;15(2):535–47.

    Article  CAS  PubMed  Google Scholar 

  23. Gonil P, Sajomsang W, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, et al. Novel quaternized chitosan containing β-cyclodextrin moiety: synthesis, characterization and antimicrobial activity. Carbohydr Polym. 2011;83(2):905–13.

    Article  CAS  Google Scholar 

  24. Wu J, Bu X, Dou L, Fang L, Shen Q. Co-delivery of docetaxel and berbamine by chitosan/sulfobutylether-β-cyclodextrin nanoparticles for enhancing bioavailability and anticancer activities. J Biomed Nanotechnol. 2015;11(10):1847–57.

    Article  CAS  PubMed  Google Scholar 

  25. Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol. 2013;10(1):1–16.

    Article  Google Scholar 

  26. Ujhelyi Z, Fenyvesi F, Váradi J, Fehér P, Kiss T, Veszelka S, et al. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur J Pharm Sci. 2012;47(3):564–73.

    Article  CAS  PubMed  Google Scholar 

  27. Pan F, Han L, Zhang Y, Yu Y, Liu J. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. Int J Food Sci Nutr. 2015;66(6):680–5.

    Article  PubMed  Google Scholar 

  28. Llancalahuen FM, Fuentes JA, Carreño A, Zúñiga C, Páez-Hernández D, Gacitúa M, Polanco R, Preite MD, Arratia-Pérez R, Otero C. New properties of a bioinspired pyridine benzimidazole compound as a novel differential staining agent for endoplasmic reticulum and golgi apparatus in fluorescence live cell imaging. Front Chem. 2018;6:345. https://doi.org/10.3389/fchem.2018.00345.

  29. Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–73.

    Article  CAS  PubMed  Google Scholar 

  30. Zajicek A, Fossler MJ, Barrett JS, Worthington JH, Ternik R, Charkoftaki G, et al. A report from the pediatric formulations task force: perspectives on the state of child-friendly oral dosage forms. AAPS J. 2013;15(4):1072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wasilewska K, Winnicka K. Ethylcellulose-a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials. 2019;12(20):3386.

    Article  CAS  PubMed Central  Google Scholar 

  32. Sun Y, Li L, Xie H, Wang Y, Gao S, Zhang L, et al. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug delivery. Int J Nanomedicine. 2020;15:3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21(2):344–53.

    Article  CAS  PubMed  Google Scholar 

  34. Leroy-Lechat F, Wouessidjewe D, Andreux JP, Puisieux F, Duchêne D. Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int J Pharm. 1994;101(1–2):97–103.

    Article  CAS  Google Scholar 

  35. Reix N, Parat A, Seyfritz E, Van Der Werf R, Epure V, Ebel N, et al. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm. 2012;437(1–2):213–20.

    Article  CAS  PubMed  Google Scholar 

  36. Jevprasesphant R, Penny J, Attwood D, D’Emanuele A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release. 2004;97(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  37. Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251: 117108.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Uehara S, Sawangrat K, Morishita M, Kusamori K, Katsumi H, et al. Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int J Pharm. 2018;535(1–2):340–9.

    Article  CAS  PubMed  Google Scholar 

  39. Che SY, Yuan JW, Zhang L, Ruan Z, Sun XM, Lu H. Puerarin prevents epithelial tight junction dysfunction induced by ethanol in Caco-2 cell model. J Funct Foods. 2020;73: 104079.

    Article  CAS  Google Scholar 

  40. Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J Nutr Biochem. 2002;13(3):157–67.

    Article  CAS  PubMed  Google Scholar 

  41. Douville NJ, Tung YC, Li R, Wang JD, El-Sayed MEH, Takayama S. Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers. Anal Chem. 2010;82(6):2505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kiss L, Hellinger É, Pilbat AM, Kittel Á, Török Z, Füredi A, et al. Sucrose esters increase drug penetration, but do not inhibit P-glycoprotein in Caco-2 intestinal epithelial cells. J Pharm Sci. 2014;103(10):3107–19.

    Article  CAS  PubMed  Google Scholar 

  43. Doi N, Tomita M, Hayashi M. Absorption enhancement of acylcarnitine through changes in tight junction protein in Caco-2 cell monolayers. Drug Metab Pharmacokinet. 2011;26(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  44. Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release. 2010;147(3):377–84.

    Article  CAS  PubMed  Google Scholar 

  45. Smith JM, Dornish M, Wood EJ. Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials. 2005;26(16):3269–76.

    Article  CAS  PubMed  Google Scholar 

  46. Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol. 2002;76(20):10455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muñoz LE, Boeltz S, Bilyy R, Schauer C, Mahajan A, Widulin N, et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 2019;51(3):443–50.

    Article  PubMed  Google Scholar 

  48. Yumoto R, Suzuka S, Oda K, Nagai J, Takano M. Endocytic uptake of FITC-albumin by human alveolar epithelial cell line A549. Drug Metab Pharmacokinet. 2012;27(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  49. Cui S, Qian J, Bo P. Inhibitive effect on phagocytosis of Candida albicans induced by pretreatment with quercetin via actin cytoskeleton interference. J Tradit Chin Med. 2013;33(6):804–9.

    Article  PubMed  Google Scholar 

  50. Nagai N, Ogata F, Ishii M, Fukuoka Y, Otake H, Nakazawa Y, et al. Involvement of endocytosis in the transdermal penetration mechanism of ketoprofen nanoparticles. Int J Mol Sci. 2018;19(7):2138.

    Article  PubMed Central  Google Scholar 

  51. Yang YF, Xu W, Song W, Ye M, Yang XW. Transport of twelve coumarins from Angelicae Pubescentis Radix across a MDCK-pHaMDR cell monolayer-an in vitro model for blood-brain barrier permeability. Molecules. 2015;20(7):11719–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 82060806), China Postdoctoral Science Foundation (2019BS006), Graduate Education Innovation Program of Guangxi University of Chinese Medicine (YCSZ2022008), Research and Training Project of College Students in Guangxi University of Chinese Medicine (2021DXS09), and Qihuang High-Level Talent Team Cultivation Project of Guangxi University of Chinese Medicine (2021002).

Author information

Authors and Affiliations

Authors

Contributions

Linghui Zou, Zhongbin Zhang, and Jinqing Chen performed the experiments and analyzed the data, and Linghui Zou was the major contributor in writing the original manuscript. Xu Yang, Yuyang Li, Jing Tang, Xiaolu Du, and Ling Tang prepared figures for the manuscript. Dan Liang, Jianfang Feng, Xiaoyong Zhu, and Wenya Ding conceptualized, reviewed, and edited the original manuscript.

Corresponding author

Correspondence to Wenya Ding.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Zhang, Z., Chen, J. et al. β-Cyclodextrin-Grafted Chitosan Enhances Intestinal Drug Absorption and Its Preliminary Mechanism Exploration. AAPS PharmSciTech 23, 221 (2022). https://doi.org/10.1208/s12249-022-02380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02380-z

Keywords

Navigation