Skip to main content
Log in

Micro-fluidic Spray Freeze Dried Ciprofloxacin Hydrochloride-Embedded Dry Powder for Inhalation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Active pharmaceutical ingredient (API)-embedded dry powder for inhalation (AeDPI) is highly desirable for pulmonary delivery of high-dose drug. Herein, a series of spray freeze-dried (SFD) ciprofloxacin hydrochloride (CH)-embedded dry powders were fabricated via a self-designed micro-fluidic spray freeze tower (MFSFT) capable of tuning freezing temperature of cooling air as the refrigerant medium. The effects of total solid content (TSC), mass ratio of CH to L-leucine (Leu) as the aerosol dispersion enhancer, and the freezing temperature on particle morphology, size, density, moisture content, crystal properties, flowability, and aerodynamic performance were investigated. It was found that the Leu content and freezing temperature had considerable influence on the fine particle fraction (FPF) of the SFD microparticles. The optimal formulation (CH/Leu = 7:3, TSC = 2%w/w) prepared at − 40°C exhibited remarkable effective drug deposition (~ 33.38%), good aerodynamic performance (~ 47.69% FPF), and excellent storage stability with ultralow hygroscopicity (~ 1.93%). This work demonstrated the promising feasibility of using the MFSFT instead of conventional liquid nitrogen assisted method in the research and development of high-dose AeDPI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn LJ, Kerwin EM, DeAngelis K, Darken P, Gillen M, Dorinsky P. Pharmacokinetics of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler formulated using co-suspension delivery technology after single and chronic dosing in patients with COPD. Pulm Pharmacol Ther. 2020;60: 101873. https://doi.org/10.1016/j.pupt.2019.101873.

    Article  CAS  PubMed  Google Scholar 

  2. Chan HK, Chew NYK. Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev. 2003;55:793–805. https://doi.org/10.1016/S0169-409X(03)00078-4.

    Article  CAS  PubMed  Google Scholar 

  3. Cipolla D. Will pulmonary drug delivery for systemic application ever fulfill its rich promise? Expert Opin Drug Deliv. 2016;13:1337–40. https://doi.org/10.1080/17425247.2016.1218466.

    Article  PubMed  Google Scholar 

  4. Quarta E, Chierici V, Flammini L, Tognolini M, Barocelli E, Cantoni AM, et al. Excipient-free pulmonary insulin dry powder: pharmacokinetic and pharmacodynamics profiles in rats. J Control Release. 2020;323:412–20. https://doi.org/10.1016/j.jconrel.2020.04.015.

    Article  CAS  PubMed  Google Scholar 

  5. Paik J. Levodopa inhalation powder: a review in Parkinson’s disease. Drugs. 2020;80:821–8. https://doi.org/10.1007/s40265-020-01307-x.

    Article  CAS  PubMed  Google Scholar 

  6. Cipolla D, Chan HK. Current and emerging inhaled therapies of repositioned drugs. Adv Drug Deliv Rev. 2018;133:1–4. https://doi.org/10.1016/j.addr.2018.09.008.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99. https://doi.org/10.1016/j.addr.2014.10.022.

    Article  CAS  PubMed  Google Scholar 

  8. DePietro M, Gilbert I, Millette LA, Riebe M. Inhalation device options for the management of chronic obstructive pulmonary disease. Postgrad Med. 2018;130:83–97. https://doi.org/10.1080/00325481.2018.1399042.

    Article  PubMed  Google Scholar 

  9. Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112: 108601. https://doi.org/10.1016/j.biopha.2019.108601.

    Article  CAS  PubMed  Google Scholar 

  10. Kadu P, Kendre P, Gursal K. Dry powder inhaler: a review. J Adv Drug Deliv. 2016;3:42–52. https://doi.org/10.1016/j.ijpharm.2008.04.044.

    Article  CAS  Google Scholar 

  11. de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14:499–512. https://doi.org/10.1080/17425247.2016.1224846.

    Article  CAS  PubMed  Google Scholar 

  12. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev. 2012;64:233–56. https://doi.org/10.1016/j.addr.2011.05.003.

    Article  CAS  PubMed  Google Scholar 

  13. Nichols DP, Durmowicz AG, Field A, Flume PA, VanDevanter DR, Mayer-Hamblett N. Developing inhaled antibiotics in cystic fibrosis: current challenges and opportunities. Ann Am Thorac Soc. 2019;16:534–9. https://doi.org/10.1513/AnnalsATS.201812-863OT.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weers J. Inhaled antimicrobial therapy - barriers to effective treatment. Adv Drug Deliv Rev. 2015;85:24–43. https://doi.org/10.1016/j.addr.2014.08.013.

    Article  CAS  PubMed  Google Scholar 

  15. Parumasivam T, Chang RYK, Abdelghany S, T. Ye T, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev. 2016;102:83–101. https://doi.org/10.1016/j.addr.2016.05.011.

  16. Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci. 2021;16:471–82. https://doi.org/10.1016/j.ajps.2021.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lechanteur A, Evrard B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: a review. Pharmaceutics. 2020;12:1–21. https://doi.org/10.3390/pharmaceutics12010055.

    Article  CAS  Google Scholar 

  18. Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm. 2018;547(1–2):489–98. https://doi.org/10.1016/j.ijpharm.2018.05.036.

    Article  CAS  PubMed  Google Scholar 

  19. Alhajj N, O’Reilly NJ, Cathcart H. Designing enhanced spray dried particles for inhalation: a review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021;384:313–31. https://doi.org/10.1016/j.powtec.2021.02.031.

    Article  CAS  Google Scholar 

  20. Miranda MS, Rodrigues MT, Domingues RMA, Torrado E, Reis RL, Pedrosa J, et al. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Mater Sci Eng C. 2018;93:1090–103. https://doi.org/10.1016/j.msec.2018.09.004.

    Article  CAS  Google Scholar 

  21. Pardeshi S, More M, Patil P, Pardeshi C, Deshmukh P, Mujumdar A. A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Dry Technol. 2021;9:1447–91. https://doi.org/10.1080/07373937.2021.1893330.

  22. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020;17:77–96. https://doi.org/10.1080/17425247.2020.1702643.

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev. 2016;100:102–15. https://doi.org/10.1016/j.addr.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  24. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  25. Nandiyanto ABD, Ogi T, Wang WN, Gradon L, Okuyama K. Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. Adv Powder Technol. 2019;30:2908–24. https://doi.org/10.1016/j.apt.2019.08.037.

    Article  Google Scholar 

  26. Topal GR, Devrim B, Eryilmaz M, Bozkir A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul. 2018;35:533–47. https://doi.org/10.1080/02652048.2018.1523970.

    Article  CAS  PubMed  Google Scholar 

  27. El-Gendy N, Desai V, Berkland C. Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. J Pharm Innov. 2010;5:79–87. https://doi.org/10.1007/s12247-010-9082-2.

    Article  Google Scholar 

  28. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488:136–53. https://doi.org/10.1016/j.ijpharm.2015.04.053.

    Article  CAS  PubMed  Google Scholar 

  29. Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: emerging applications in drug delivery. J Control Release. 2019;300:93–101. https://doi.org/10.1016/j.jconrel.2019.02.044.

    Article  CAS  PubMed  Google Scholar 

  30. Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41:161–81. https://doi.org/10.1016/j.tifs.2014.10.008.

    Article  CAS  Google Scholar 

  31. Weers J, Tarara T. The PulmoSphereTM platform for pulmonary drug delivery. Ther Deliv. 2014;5:277–95. https://doi.org/10.4155/tde.14.3.

    Article  CAS  PubMed  Google Scholar 

  32. Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014;75:32–52. https://doi.org/10.1016/j.addr.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  33. Yu H, Tran TT, Teo J, Hadinoto K. Dry powder aerosols of curcumin-chitosan nanoparticle complexprepared by spray freeze drying and their antimicrobial efficacyagainst common respiratory bacterial pathogens. Colloid Surface A. 2016;504:34–42. https://doi.org/10.1016/j.colsurfa.2016.05.053.

    Article  CAS  Google Scholar 

  34. Wanning S, Süverkrüp R, Lamprecht A. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders. Int J Pharm. 2020;586: 119564. https://doi.org/10.1016/j.ijpharm.2020.119564.

    Article  CAS  PubMed  Google Scholar 

  35. Yu H, Teo J, Chew JW, Hadinoto K. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: spray drying versus spray freeze drying preparation. Int J Pharm. 2016;499:38–46. https://doi.org/10.1016/j.ijpharm.2015.12.072.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu C, Chen J, Yu S, Que C, Taylor LS, Tan W, Wu C, Zhou QT. Inhalable nanocomposite microparticles with enhanced dissolution and superior aerosol performance. Mol Pharm. 2020;17:3270–80. https://doi.org/10.1021/acs.molpharmaceut.0c00390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engstrom JD, Simpson DT, Lai ES, Williams RO, Johnston KP. Morphology of protein particles produced by spray freezing of concentrated solutions. Eur J Pharm Biopharm. 2007;65:149–62. https://doi.org/10.1016/j.ejpb.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  38. Feng H, Xu Y, Yang T. Study on Leidenfrost effect of cryoprotectant droplets on liquid nitrogen with IR imaging technology and non-isothermal crystallization kinetics model. Int J Heat Mass Transf. 2018;127:413–21. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.001.

    Article  CAS  Google Scholar 

  39. Sharma G, Mueannoom W, Buanz ABM, Taylor KMG, Gaisford S. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying. Int J Pharm. 2013;447:165–70. https://doi.org/10.1016/j.ijpharm.2013.02.045.

    Article  CAS  PubMed  Google Scholar 

  40. Leuenberger H, Plitzko M, Puchkov M. Spray freeze drying in a fluidized bed at normal and low pressure. Dry Technol. 2006;24:711–9. https://doi.org/10.1080/07373930600684932.

    Article  CAS  Google Scholar 

  41. Di A, Zhang S, Liu X, Tong Z, Sun S, Tang Z. Microfluidic spray dried and spray freeze dried uniform microparticles potentially for intranasal drug delivery and controlled release. Powder Technol. 2020;379:144–53. https://doi.org/10.1016/j.powtec.2020.10.061.

    Article  CAS  Google Scholar 

  42. Vidyavathi M, Srividya G. A review on ciprofloxacin: dosage form perspective. Int J Appl Pharm. 2018;10:6–10. https://doi.org/10.22159/ijap.2018v10i4.25315.

  43. Hurley M, Smyth A. Fluoroquinolones in the treatment of bronchopulmonary disease in cystic fibrosis. Ther Adv Respir Dis. 2012;6:363–73. https://doi.org/10.1177/1753465812459899.

    Article  CAS  PubMed  Google Scholar 

  44. Wu D, Zhang S, Liao Z, Wu Z, Xiao J, Chen X. Freezing temperature controllable spray freezing tower for preparing micron-sized spherical ice particles. US10436493 B2. 2019.

  45. Wu D, Liao Z, Zhang S, Wu Z, Xiao J, Chen X. Double-sealing type apparatus for collecting spray freeze ice ball particles and collecting method thereof. US10337796 B2. 2019.

  46. Hao T. Understanding empirical powder flowability criteria scaled by Hausner ratio or Carr index with the analogous viscosity concept. RSC Adv. 2015;5:57212–5. https://doi.org/10.1039/C5RA07197F.

    Article  CAS  Google Scholar 

  47. Bae EK, Lee SJ. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J Microencapsul. 2008;25:549–60. https://doi.org/10.1080/02652040802075682.

    Article  CAS  PubMed  Google Scholar 

  48. Kirk JH, Dann SE, Blatchford CG. Lactose: a definitive guide to polymorph determination. Int J Pharm. 2007;334:103–14. https://doi.org/10.1016/j.ijpharm.2006.10.026.

    Article  CAS  PubMed  Google Scholar 

  49. Yazdanpanah N, Langrish TAG. Heterogeneous particle structure formation during post-crystallization of spray-dried powder. Particuology. 2016;27:72–9. https://doi.org/10.1016/j.partic.2015.09.007.

    Article  Google Scholar 

  50. Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou Q. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int J Pharm. 2018;544:222–34. https://doi.org/10.1016/j.ijpharm.2018.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhatnagar B, Tchessalov S, Ohtake S, Sebasti IB, Plitzko M, Luy B, et al. Bulk dynamic spray freeze-drying part 1: modeling of droplet cooling and phase change. J Pharm Sci. 2019;108:2063–74. https://doi.org/10.1016/j.xphs.2019.01.009.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang S, Lei H, Gao X, Xiong X, Wu WD, Wu Z, et al. Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technol. 2018;330:40–9. https://doi.org/10.1016/j.powtec.2018.02.020.

    Article  CAS  Google Scholar 

  53. Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78:248–63. https://doi.org/10.1016/j.ejpb.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  54. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8. https://doi.org/10.1016/j.ijpharm.2018.05.061.

    Article  CAS  Google Scholar 

  55. Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release. 2018;292:111–8. https://doi.org/10.1016/j.jconrel.2018.10.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders - a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. https://doi.org/10.1016/j.powtec.2006.10.016.

    Article  CAS  Google Scholar 

  57. Zhang X, Zhao Z, Cui Y, Liu F, Huang Z, Huang Y, et al. Effect of powder properties on the aerosolization performance of nanoporous mannitol particles as dry powder inhalation carriers. Powder Technol. 2019;358:46–54. https://doi.org/10.1016/j.powtec.2018.08.058.

    Article  CAS  Google Scholar 

  58. Ma X, Yan S, Zhang S, Yin Q, Chen X, Wu WD. Shell-formation mediated surface composition of uniform two-component microparticles fabricated by micro-fluidic spray drying: effect of component size and solubility. Particuology. 2021;67:68–78. https://doi.org/10.1016/j.partic.2021.10.005.

    Article  CAS  Google Scholar 

  59. Ordoubadi M, Gregson FKA, Wang H, Nicholas M, Gracin S, Lechuga-ballesteros D, et al. On the particle formation of leucine in spray drying of inhalable microparticles. Int J Pharm. 2020;592: 120102. https://doi.org/10.1016/j.ijpharm.2020.120102.

    Article  CAS  PubMed  Google Scholar 

  60. You X, Zhou Z, Liao Z, Che L, Chen XD, Duo W, et al. Dairy milk particles made with a mono-disperse droplet spray dryer (MDDSD) investigated for the effect of fat. Dry Technol. 2014;32:37–41. https://doi.org/10.1080/07373937.2013.840650.

    Article  CAS  Google Scholar 

  61. Putra OD, Pettersen A, Yonemochi E, Uekusa H. Structural origin of physicochemical properties differences upon dehydration and polymorphic transformation of ciprofloxacin hydrochloride revealed by structure determination from powder X-ray diffraction data. CrystEngComm. 2020;22:7272–9. https://doi.org/10.1039/d0ce00261e.

    Article  CAS  Google Scholar 

  62. Liu Y, Wang J, Yin Q. The crystal habit of ciprofloxacin hydrochloride monohydrate crystal. J Cryst Growth. 2005;276:237–42. https://doi.org/10.1016/j.jcrysgro.2004.11.323.

    Article  CAS  Google Scholar 

  63. Razuc M, Piña J, Ramírez-rigo MV. Optimization of ciprofloxacin hydrochloride spray-dried microparticles for pulmonary delivery using design of experiments. AAPS. 2018;19:3085–96. https://doi.org/10.1208/s12249-018-1137-6.

    Article  CAS  Google Scholar 

  64. Zordok WA. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: spectroscopic, structure, thermal analyses, kinetics and biolog. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2014;129:519–36. https://doi.org/10.1016/j.saa.2014.02.087.

    Article  CAS  Google Scholar 

  65. Adhikari S, Kar T. Bulk single crystal growth and characterization of L-leucine- a nonlinear optical material. Mater Chem Phys. 2012;133:1055–9. https://doi.org/10.1016/j.matchemphys.2012.02.015.

    Article  CAS  Google Scholar 

  66. Joseph J, Jemmis ED. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Adv Drug Deliv. 2007;129:4620–32. https://doi.org/10.1021/ja067545.

    Article  CAS  Google Scholar 

  67. Thakuria R, Sarma B, Nangia A, Screening H. Hydrogen Bonding in Molecular Crystals. Compr Supramol Chem. 2017;II(7):25–48. https://doi.org/10.1016/B978-0-12-409547-2.12598-3.

    Article  Google Scholar 

  68. Wang YB, Watts AB, Williams RO. Effect of processing parameters on the physicochemical and aerodynamic properties of respirable brittle matrix powders. J Drug Deliv Sci Technol. 2014;24:390–6. https://doi.org/10.1016/S1773-2247(14)50079-2.

    Article  CAS  Google Scholar 

  69. Assegehegn G, Brito-de la Fuente E, Franco JM, and Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J Pharm Sci. 2019;108:1378–95. https://doi.org/10.1016/j.xphs.2018.11.03.

  70. Li L, Leung SSY, Gengenbach T, Yu J, Gao G, Tang P, et al. Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate powder for inhalation. Int J Pharm. 2017;530:30–9. https://doi.org/10.1016/j.ijpharm.2017.07.033.

    Article  CAS  PubMed  Google Scholar 

  71. Karimi K, Katona G, Csóka I, Ambrus R. Physicochemical stability and aerosolization performance of dry powder inhalation system containing ciprofloxacin hydrochloride. J Pharm Biomed Anal. 2018;148:73–9. https://doi.org/10.1016/j.jpba.2017.09.019.

    Article  CAS  PubMed  Google Scholar 

  72. Otake H, Okuda T, Okamoto H. Development of spray-freeze-fried powders for inhalation with high inhalation performance and antihygroscopic property. Chem Pharm Bull. 2016;64:239–45. https://doi.org/10.1248/cpb.c15-00824.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (No. 21878197), the Natural Science Foundation of Jiangsu Province (No. BK20180096) and Jiangsu Higher Education Institutions (No. 18KJA530004), the Suzhou Municipal Science and Technology Bureau (No. SYG201810), the Postdoctoral Science Foundation of Jiangsu Province (2021K356C), and the Particle Engineering Laboratory at Soochow University (SDHY2136). Support from the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions was also received.

Author information

Authors and Affiliations

Authors

Contributions

YC: conceptualization, methodology, data curation. SY: validation, visualization, investigation, reviewing, and editing. SZ: validation, visualization, and investigation. QY: validation, data curation, original draft preparation, reviewing, and editing. XDC: validation. WDW: conceptualization, validation, supervision, reviewing, and editing.

Corresponding authors

Correspondence to Quanyi Yin or Winston Duo Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1753 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yan, S., Zhang, S. et al. Micro-fluidic Spray Freeze Dried Ciprofloxacin Hydrochloride-Embedded Dry Powder for Inhalation. AAPS PharmSciTech 23, 211 (2022). https://doi.org/10.1208/s12249-022-02371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02371-0

Keywords

Navigation