Skip to main content

Advertisement

Log in

Preparation and Evaluation of a Microsponge Dermal Stratum Corneum Retention Drug Delivery System for Griseofulvin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Griseofulvin (GF) is used as an antifungal to treat superficial skin fungal infections such as tinea capitis and tinea pedis. Currently, GF is only available in traditional oral dosage forms and suffers from poor and highly variable bioavailability, hepatotoxicity, and long duration of treatment. Therefore, the main objective of this study was to reduce the side effects of the drug and to increase the concentration of the drug retained in the cutaneous stratum corneum (SC) and improve its efficacy through the preparation of drug-laden GF microsponge (GFMS). The emulsification-solvent-diffusion method was used to prepare GFMS, and the prescriptions were screened by a single-factor approach. The optimized formulation (GFF8) had a microsponge particle size (μm) of 28.36 ± 0.26, an encapsulation efficiency (%) of 87.53 ± 1.07, a yield (%) of 86.58 ± 0.42, and drug release (%) from 77.57 ± 3.88. The optimized microsponge formulation was then loaded into a Carbopol 934 gel matrix and skin retention differences between the microsponge gel formulation and normal gels were examined by performing skin retention and fluorescence microscopy tests. Finally, the hepatoprotective and cutaneous stratum corneum retention abilities of microsponge gel formulations compared to oral GF formulations were assessed by hepatotoxicity, pharmacokinetics, and tissue distribution studies. This provides a new perspective on GF dermal stratum corneum retention administration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nweze EI, Eke IE. Dermatophytes and dermatophytosis in the eastern and southern parts of Africa. Med Mycol. 2018;56(1):13–28. https://doi.org/10.1093/mmy/myx025.

    Article  CAS  PubMed  Google Scholar 

  2. Kaushik N, Pujalte GGA, Reese ST. Superficial fungal infections. Prim Care Clin Off Pract. 2015;42(4):501–16. https://doi.org/10.1016/j.pop.2015.08.004.

    Article  Google Scholar 

  3. Marto J, Vitor C, Guerreiro A, Severino C, Eleutério C, Ascenso A, et al. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf B Biointerfaces. 2016;146:616–23. https://doi.org/10.1016/j.colsurfb.2016.07.021.

    Article  CAS  PubMed  Google Scholar 

  4. Geronikaki A, Kartsev V, Petrou A, Akrivou MG, Vizirianakis IS, Chatzopoulou FM, et al. Antibacterial activity of griseofulvin analogues as an example of drug repurposing. Int J Antimicrob Agents. 2020;55(3):105884. https://doi.org/10.1016/j.ijantimicag.2020.105884.

    Article  CAS  PubMed  Google Scholar 

  5. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—Dermatophytosis. Int J Pharm. 2012;437(1):277–87. https://doi.org/10.1016/j.ijpharm.2012.08.015.

    Article  CAS  PubMed  Google Scholar 

  6. Shishu, Aggarwal N. Preparation of hydrogel of griseofulvin for dermal application. Int J Pharm. 2006;326(1–2):20–4. https://doi.org/10.1016/j.ijpharm.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  7. Götz H, Reichenberger M. Results of questionnaires of 1670 dermatologists in West Germany concerning the side effects of griseofulvin therapy. Hautarzt. 1972;23(11):485–92.

    PubMed  Google Scholar 

  8. Aly R, Bayles CI, Oakes RA, Bibel DJ, Maibach HI. Topical griseofulvin in the treatment of dermatophytoses. Clin Exp Dermatol. 1994;19(1):43–6. https://doi.org/10.1111/j.1365-2230.1994.tb01113.x.

    Article  CAS  PubMed  Google Scholar 

  9. Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: an emerging drug delivery strategy. Drug Dev Res. 2019;80(2):200–8. https://doi.org/10.1002/ddr.21492.

    Article  CAS  PubMed  Google Scholar 

  10. Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm. 2011;61(3):257–70. https://doi.org/10.2478/v10007-011-0022-6.

    Article  CAS  PubMed  Google Scholar 

  11. Mahant S, Kumar S, Nanda S, Rao R. Microsponges for dermatological applications: perspectives and challenges. Asian J Pharm Sci. 2020;15(3):273–91. https://doi.org/10.1016/j.ajps.2019.05.004.

    Article  PubMed  Google Scholar 

  12. Nagula RL, Wairkar S. Cellulose microsponges based gel of naringenin for atopic dermatitis: design, optimization, in vitro and in vivo investigation. Int J Biol Macromol. 2020;164:717–25. https://doi.org/10.1016/j.ijbiomac.2020.07.168.

    Article  CAS  PubMed  Google Scholar 

  13. Comoğlu T, Gönül N, Baykara T. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farmaco. 2003;58(2):101–6. https://doi.org/10.1016/s0014-827x(02)00007-1.

    Article  PubMed  Google Scholar 

  14. Obiedallah MM, Abdel-Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J. 2018;26(7):909–20. https://doi.org/10.1016/j.jsps.2018.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shinde P, Agraval H, Srivastav AK, Yadav UCS, Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int J Pharm. 2020;588:119795. https://doi.org/10.1016/j.ijpharm.2020.119795.

    Article  CAS  PubMed  Google Scholar 

  16. Shahzad Y, Saeed S, Ghori MU, Mahmood T, Yousaf AM, Jamshaid M, et al. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int J Biol Macromol. 2018;109:963–70. https://doi.org/10.1016/j.ijbiomac.2017.11.089.

    Article  CAS  PubMed  Google Scholar 

  17. Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int J Pharm. 2006;308(1–2):124–32. https://doi.org/10.1016/j.ijpharm.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  18. Orlu M, Cevher E, Araman A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int J Pharm. 2006;318(1):103–17. https://doi.org/10.1016/j.ijpharm.2006.03.025.

    Article  CAS  PubMed  Google Scholar 

  19. Osmani RA, Aloorkar NH, Ingale DJ, Kulkarni PK, Hani U, Bhosale RR, et al. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm J. 2015;23(5):562–72. https://doi.org/10.1016/j.jsps.2015.02.020.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 2010;398(1):165–78. https://doi.org/10.1016/j.ijpharm.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  21. Deshmukh K, Poddar SS. Tyrosinase inhibitor-loaded microsponge drug delivery system: new approach for hyperpigmentation disorders. J Microencapsul. 2012;29(6):559–68. https://doi.org/10.3109/02652048.2012.668955.

    Article  CAS  PubMed  Google Scholar 

  22. Matshetshe KI, Parani S, Manki SM, Oluwafemi OS. Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int J Biol Macromol. 2018;118:676–82. https://doi.org/10.1016/j.ijbiomac.2018.06.125.

    Article  CAS  PubMed  Google Scholar 

  23. Deshmukh RK, Naik JB. The impact of preparation parameters on sustained release aceclofenac microspheres: a design of experiments. Adv Powder Technol. 2015;26(1):244–52. https://doi.org/10.1016/j.apt.2014.10.004.

    Article  CAS  Google Scholar 

  24. Botros SR, Hussein AK, Mansour HF. A novel nanoemulsion intermediate gel as a promising approach for delivery of itraconazole: design, in vitro and ex vivo appraisal. AAPS PharmSciTech. 2020;21(7):272. https://doi.org/10.1208/s12249-020-01830-w.

    Article  CAS  PubMed  Google Scholar 

  25. Tan YJ, Lee CS, Er HM, Lim WH, Wong SF. In-vitro evaluation of griseofulvin loaded lipid nanoparticles for topical delivery. J Drug Deliv Sci Technol. 2016;31:1–10. https://doi.org/10.1016/j.jddst.2015.11.002.

    Article  CAS  Google Scholar 

  26. Wadhwa G, Kumar S, Mittal V, Rao R. Encapsulation of babchi essential oil into microsponges: physicochemical properties, cytotoxic evaluation and anti-microbial activity. J Food Drug Anal. 2019;27(1):60–70. https://doi.org/10.1016/j.jfda.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  27. Osmani RA, Aloorkar NH, Ingale DJ, Kulkarni PK, Hani U, Bhosale RR, et al. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm J. 2018;23(5):562–72. https://doi.org/10.1016/j.jsps.2015.02.020.

    Article  Google Scholar 

  28. Gupta S, Wairkar S, Bhatt LK. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J Microencapsul. 2020;37(8):557–65. https://doi.org/10.1080/02652048.2020.1823499.

    Article  CAS  PubMed  Google Scholar 

  29. Parhi R, Goli VVN. Design and optimization of film-forming gel of etoricoxib using research surface methodology. Drug Deliv Transl Res. 2020;10(2):498–514. https://doi.org/10.1007/s13346-019-00695-2.

    Article  CAS  PubMed  Google Scholar 

  30. Plaum S, Verma A, Fleischer AB Jr, Olayinka B, Hardas B. Detection and relevance of naftifine hydrochloride in the stratum corneum up to four weeks following the last application of naftifine cream and gel, 2%. J Drugs Dermatol. 2013;12(9):1004–8.

    CAS  PubMed  Google Scholar 

  31. Takeuchi I, Takeshita T, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces. 2017;160:520–6. https://doi.org/10.1016/j.colsurfb.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  32. Khoza S, Moyo I, Ncube D. Comparative hepatotoxicity of fluconazole, ketoconazole, itraconazole, terbinafine, and griseofulvin in rats. J Toxicol. 2017;2017:6746989. https://doi.org/10.1155/2017/6746989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei B, Liang D, Bates TR. Development and validation of a HPLC method to determine griseofulvin in rat plasma: application to pharmacokinetic studies. Anal Chem Insights. 2008;3:103–9. https://doi.org/10.4137/aci.s953.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moghimipour E, Salimi A, Changizi S. Preparation and microstructural characterization of griseofulvin microemulsions using different experimental methods SAXS and DSC. Adv Pharm Bull. 2017;7(2):281–9. https://doi.org/10.15171/apb.2017.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bothiraja C, Gholap AD, Shaikh KS, Pawar AP. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther Deliv. 2014;5(7):781–94. https://doi.org/10.4155/tde.14.43.

    Article  CAS  PubMed  Google Scholar 

  36. Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J. 2020;28(3):349–61. https://doi.org/10.1016/j.jsps.2020.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alexa IF, Ignat M, Popovici RF, Timpu D, Popovici E. In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices. Int J Pharm. 2012;436(1–2):111–9. https://doi.org/10.1016/j.ijpharm.2012.06.036.

    Article  CAS  PubMed  Google Scholar 

  38. Bravo SA, Lamas MC, Salamón CJ. In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J Pharm Pharm Sci. 2002;5(3):213–9. https://pubmed.ncbi.nlm.nih.gov/12553888.

  39. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2015;67(3):217–23. https://pubmed.ncbi.nlm.nih.gov/20524422/. Accessed May 2021.

  40. Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci. 2017;96:243–54. https://doi.org/10.1016/j.ejps.2016.09.038.

  41. Liu K, Yan J, Sachar M, Zhang X, Guan M, Xie W, et al. A metabolomic perspective of griseofulvin-induced liver injury in mice. Biochem Pharmacol. 2015;98(3):493–501. https://doi.org/10.1016/j.bcp.2015.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elghblawi E. Tinea capitis in children and trichoscopic criteria. Int J Trichology. 2017;9(2):47–9. https://doi.org/10.4103/ijt.ijt_54_16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nimni ME, Ertl D, Oakes RA. Distribution of griseofulvin in the rat: com parison of the oral and topical route of administration. J Pharm Pharmacol. 1990;42(10):729–31. https://doi.org/10.1111/j.2042-7158.1990.tb06570.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Key R&D Project of Jilin Province Science and Technology Development Plan of China (No. 20210204166YY).

Author information

Authors and Affiliations

Authors

Contributions

Lin Ma, Song Guo, Mingguan Piao, and Jingshu Piao designed the study, carried out statistical analysis, drafted, and revised the manuscript. Lin Ma participated in the whole study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingshu Piao or Mingguan Piao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Guo, S., Piao, J. et al. Preparation and Evaluation of a Microsponge Dermal Stratum Corneum Retention Drug Delivery System for Griseofulvin. AAPS PharmSciTech 23, 199 (2022). https://doi.org/10.1208/s12249-022-02362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02362-1

Keywords

Navigation