Skip to main content

Advertisement

Log in

Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy

  • Review Article
  • Active and Passive Permeation Enhancement Strategies for Transdermal Delivery of Bioactive Compounds
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cAMP:

Cyclic adenosine monophosphate

DHT:

Dihydrotestosterone

DMBA:

7,12-Dimethylbenz[a]anthracene

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ECG:

Epicatechin gallate

EGC:

(−)-Epigallocatechin

EGCG:

(−)-Epigallocatechin-3-gallate

GI:

Gastrointestinal

HaCaT:

Immobilized human keratinocytes

HLB:

Hydrophile-lipophile balance

iNOS:

Inducible nitric oxide synthase

MIC:

Minimum inhibition concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

NEs:

Nanoemulsions

NLCs:

Nanostructured lipid carriers

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PI3K-Akt-mTORC1:

Phosphoinositide 3-kinase-Akt-mammalian target of rapamycin complex 1

PLGA:

Poly(lactic-co-glycolic acid)

PSEs:

Palm sucrose esters

ROS:

Reactive oxygen species

SC:

Stratum corneum

SLNs:

Solid lipid nanoparticles

T2P:

Di-tocopheryl phosphate ester

TP:

α-Tocopheryl phosphate

UV:

Ultraviolet

References

  1. Bag S, Mondal A, Majumder A, Banik A. Tea and its phytochemicals: hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem. 2022;371:131098.

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Provan GJ, Helliwell K. Tea flavonoids: their functions, utilization and analysis. Trends Food Sci Technol. 2000;11:152–60.

    Article  CAS  Google Scholar 

  3. Baroli L, Sarni AR, Zuliani C. Plant foods rich in antioxidants and human cognition: a systematic review. Antioxidants. 2021;10:714.

    Article  Google Scholar 

  4. Sanlier N, Atik I, Atik A. A minireview of effects of white tea consumption on diseases. Trends Food Sci Technol. 2018;82(82):88.

    Google Scholar 

  5. Pedro AC, Maciel GM, Ribeiro VR, Haminiuk CWI. Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol. 2020;55:429–42.

    Article  CAS  Google Scholar 

  6. Haghparasti Z, Mahdavi SM. Green synthesis of water-soluble nontoxic inorganic polymer nanocomposites containing silver nanoparticles using white tea extract and assessment of their in vitro antioxidant and cytotoxicity activities. Mater Sci Eng C Mater Biol Appl. 2018;87:139–48.

    Article  CAS  PubMed  Google Scholar 

  7. Monga J, Aggarwal V, Suthar SK, Monika, Nongalleima K, Sharma M. Topical (+)-catechin emulsified gel prevents DMBA/TPA-induced squamous cell carcinoma of the skin by modulating antioxidants and inflammatory biomarkers in BALB/c mice. Food Funct. 2014;5:3197–207.

  8. Abudureheman B, Yu X, Fang D, Zhang H. Enzymatic oxidation of tea catechins and its mechanism. Molecules. 2022;27:942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of catechin: a review. Mini Rev Med Chem. 2022;22:821–33.

    Article  PubMed  Google Scholar 

  10. Wang L, Huang X, Jing H, Ye X, Jiang C, Shao J, Ma C, Wang H. Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization. Anal Methods. 2021;13:832–42.

    Article  CAS  PubMed  Google Scholar 

  11. Xu YQ, Gao Y, Granato D. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem. 2021;339:128060.

    Article  CAS  PubMed  Google Scholar 

  12. Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as model bioactive compounds for biomedical applications. Curr Pharm Des. 2020;26:4032–47.

  13. Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep. 2020;7:386–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol. 2020;4:8.

    Article  Google Scholar 

  15. Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of tea (Camellia sinensis) and its active constituents in cosmetic. Molecules. 2019;24:4277.

    Article  CAS  PubMed Central  Google Scholar 

  16. Frasheri L, Schielein MC, Tizek L, Mikschl P, Biedermann T, Zink A. Great green tea ingredient? A narrative literature review on epigallocatechin gallate and its biophysical properties for topical use in dermatology. Phytother Res. 2020;34:2170–9.

    Article  CAS  PubMed  Google Scholar 

  17. Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Devel Ther. 2020;14:3271–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng YC, Li TS, Su HL, Lee PC, Wang HD. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules. 2020;25:5051.

    Article  CAS  PubMed Central  Google Scholar 

  19. Patel R, Kevin Heard L, Chen X, Bollag WB. Aquaporins in the skin. Adv Exp Med Biol. 2017;969:173–91.

    Article  CAS  PubMed  Google Scholar 

  20. OyetakinWhite P, Tribout H, Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid Med Cell Longev. 2012;2012:560682.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019;11:474.

    Article  CAS  PubMed Central  Google Scholar 

  22. Hong YH, Jung EY, Noh DO, Suh HJ. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities. Integr Med Res. 2014;3:25–33.

    Article  PubMed  Google Scholar 

  23. Sarkar J, Nandy SK, Chowdhury A, Chakraborti T, Chakraborti S. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Biomed Pharmacother. 2016;84:340–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr. 2020;6:115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Syed TA, Wong WH, Ahmad SA, Aly R. Phase II, clinical evaluation of 2% polyphenone (green tea extract) in a hydrophilic gel to assess improvement in damaged and premature aged facial skin. A placebo-controlled, double blind study. J Am Acad Dermatol. 2004;50:25.

    Article  Google Scholar 

  26. Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020;21:1744.

    Article  CAS  PubMed Central  Google Scholar 

  27. Guan LL, Lim HW, Mohammad TF. Sunscreens and photoaging: a review of current literature. Am J Clin Dermatol. 2021;22:819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saric S, Sivamani RK. Polyphenols and sunburn. Int J Mol Sci. 2016;17:1521.

    Article  PubMed Central  Google Scholar 

  29. Sheng YY, Xiang J, Lu JL, Ye JH, Chen ZJ, Zhao JW, Liang YR, Zheng XQ. Protective effects of gallocatechin gallate against ultraviolet B induced skin damages in hairless mice. Sci Rep. 2022;12:1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hazarika N. Acne vulgaris: new evidence in pathogenesis and future modalities of treatment. J Dermatol Treat. 2021;32:277–85.

    Article  CAS  Google Scholar 

  31. Karagianni F, Pavlidis A, Malakou LS, Piperi C, Papadavid E. Predominant role of mTOR signaling in skin diseases with therapeutic potential. Int J Mol Sci. 2022;23:1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melnik BC, Schmitz G. Are therapeutic effects of antiacne agents mediated by activation of FoxO1 and inhibition of mTORC1? Exp Dermatol. 2013;22:502–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saric S, Notay M, Sivamani RK. Green tea and other tea polyphenols: effects on sebum production and acne vulgaris. Antioxidants. 2017;6:2.

    Article  Google Scholar 

  34. Yoon JY, Kwon HH, Min SU, Thiboutot DM, Suh DH. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J Invest Dermatol. 2013;133:429–40.

    Article  CAS  PubMed  Google Scholar 

  35. Meethama P, Kanlayavattanakula M, Louritha N. Development and clinical efficacy evaluation of anti-greasy green tea tonner on facial skin. Rev Bras Farmacogn. 2018;28:214–7.

    Article  Google Scholar 

  36. Nestor MS, Ablon G, Gade A, Han H, Fischer DL. Treatment options for androgenetic alopecia: efficacy, side effects, compliance, financial considerations, and ethics. J Cosmet Dermatol. 2021;20:3759–81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol. 2002;63:1165–76.

    Article  CAS  PubMed  Google Scholar 

  38. Kim YY, Up No S, Kim MH, Kim HS, Kang H, Kim HO, Park YM. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model. Exp Dermatol. 2011;20:1015–7.

    Article  CAS  PubMed  Google Scholar 

  39. Afonina IS, Van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci. 2021;78:2709–27.

    Article  CAS  PubMed  Google Scholar 

  40. Yun M, Seo G, Lee JY, Chae GT, Lee SB. Epigallocatechin-3-gallate attenuates the AIM2-induced secretion of IL-1β in human epidermal keratinocytes. Biochem Biophys Res Commun. 2015;467:723–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsu S, Dickinson D, Borke J, Walsh DS, Wood J, Qin H, Winger J, Pearl H, Schuster G, Bollag WB. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model. Exp Dermatol. 2007;16:678–84.

    Article  CAS  PubMed  Google Scholar 

  43. Noh SU, Cho EA, Kim HO, Park YM. Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol. 2008;8:1172–82.

    Article  CAS  PubMed  Google Scholar 

  44. Patrizi A, Raone B, Neri I, Gurioli C, Carbonara M, Cassano N, Vena GA. Randomized, controlled, double-blind clinical study evaluating the safety and efficacy of MD2011001 cream in mild-to-moderate atopic dermatitis of the face and neck in children, adolescents and adults. J Dermatol Treat. 2016;27:346–50.

    Article  CAS  Google Scholar 

  45. Song JY, Han JH, Song Y, Lee JH, Choi SY, Park YM. Epigallocatechin-3-gallate can prevent type 2 human papillomavirus E7 from suppressing interferon-stimulated genes. Int J Mol Sci. 2021;22:2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tatti S, Stockfleth E, Beutner KR, Tawfik H, Elsasser U, Weyrauch P, Mescheder A. Polyphenon E: a new treatment for external anogenital warts. Br J Dermatol. 2010;162:176–84.

    Article  CAS  PubMed  Google Scholar 

  47. Pizzini L, De Luca G, Milani M. Efficacy and tolerability of topical polyphenon E in multiple “seborrheic keratosis-like” lesions of the groin in an immunocompetent 26-year-old man. Case Rep Dermatol. 2019;11:310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, Hu X, Tan WQ. Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review. Molecules. 2021;26:6123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Q, Kelly AP, Wang L, French SW, Tang X, Duong HS, Messadi DV, Le AD. Green tea extract and (−)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways. J Invest Dermatol. 2006;126:2607–13.

    Article  CAS  PubMed  Google Scholar 

  50. Ud-Din S, Foden P, Mazhari M, Al-Habba S, Baguneid M, Bulfone-Paus S, McGeorge D, Bayat A. A double-blind, randomized trial shows the role of zonal priming and direct topical application of epigallocatechin-3-gallate in the modulation of cutaneous scarring in human skin. J Invest Dermatol. 2019;139:1680–90.

    Article  CAS  PubMed  Google Scholar 

  51. Wu M, Brown AC. Applications of catechins in the treatment of bacterial infections. Pathogens. 2021;10:546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct. 2020;11:9370–96.

    Article  CAS  PubMed  Google Scholar 

  53. Hengge R. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules. 2019;24:2430.

    Article  Google Scholar 

  54. Filippini T, Malavolti M, Borrelli F, Izzo AA, Fairweather-Tait SJ, Horneber M, Vinceti M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev. 2020;3:CD005004.

  55. Monga J, Aggarwal V, Suthar SK, Monika, Nongalleima K, Sharma M. Topical (+)-catechin emulsified gel prevents DMBA/TPA-induced squamous cell carcinoma of the skin by modulating antioxidants and inflammatory biomarkers in BALB/c mice. Food Funct. 2014;5:3197–207.

  56. Kerzendorfer C, O’Driscoll M. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB. J Invest Dermatol. 2009;129:1611–3.

    Article  CAS  PubMed  Google Scholar 

  57. Herman A, Herman AP. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol Physiol. 2013;26:8–14.

    Article  CAS  PubMed  Google Scholar 

  58. Völker JM, Koch N, Becker M, Klenk A. Caffeine and its pharmacological benefits in the management of androgenetic alopecia: a review. Skin Pharmacol Physiol. 2020;33:93–109.

    Article  PubMed  Google Scholar 

  59. Lefèvre-Utile A, Braun C, Haftek M, Aubin F. Five functional aspects of the epidermal barrier. Int J Mol Sci. 2021;22:11676.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  CAS  PubMed  Google Scholar 

  61. Shibusawa Y, Shoji A, Yanagida A, Shindo H, Tagashira M, Ikeda M, Ito Y. Determination of log Po/w for catechins and their isomers, oligomers, and other organic compounds by stationary phase controlled high-speed countercurrent chromatography. J Liq Chromatogr Relat Technol. 2005;28:2819–37.

    Article  CAS  Google Scholar 

  62. Zillich OV, Schweiggert-Weisz U, Hasenkopf K, Eisner P, Kerscher M. Antioxidant activity, lipophilicity and extractability of polyphenols from pig skin–development of analytical methods for skin permeation studies. Biomed Chromatogr. 2013;27:1444–51.

    Article  CAS  PubMed  Google Scholar 

  63. Abla MJ, Banga AK. Quantification of skin penetration of antioxidants of varying lipophilicity. Int J Cosmet Sci. 2013;35:19–26.

    Article  CAS  PubMed  Google Scholar 

  64. Batchelder RJ, Calder RJ, Thomas CP, Heard CM. In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis. Int J Pharm. 2004;283:45–51.

    Article  CAS  PubMed  Google Scholar 

  65. Fang JY, Hung CF, Hwang TL, Wong WW. Transdermal delivery of tea catechins by electrically assisted methods. Skin Pharmacol Physiol. 2006;19:28–37.

    Article  CAS  PubMed  Google Scholar 

  66. Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol. 2018;57:646–60.

    Article  PubMed  Google Scholar 

  67. Hu X, He H. A review of cosmetic skin delivery. J Cosmet Dermatol. 2021;20:2020–30.

    Article  PubMed  Google Scholar 

  68. Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020;17:145–55.

    Article  PubMed  Google Scholar 

  69. Fang JY, Tsai TH, Lin YY, Wong WW, Wang MN, Huang JF. Transdermal delivery of tea catechins and theophylline enhanced by terpenes: a mechanistic study. Biol Pharm Bull. 2007;30:343–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomed. 2016;11:1987–2007.

    Article  CAS  Google Scholar 

  71. Bakshi P, Vora D, Hemmady K, Banga AK. Iontophoretic skin delivery systems: Success and failures. Int J Pharm. 2020;586:119584.

    Article  CAS  PubMed  Google Scholar 

  72. Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target. 2016;24:386–91.

    Article  CAS  PubMed  Google Scholar 

  73. Ita K. Perspectives on transdermal electroporation. Pharmaceutics. 2016;8:9.

    Article  PubMed Central  Google Scholar 

  74. Wong TW, Ko SF, Hui SW. Enhancing transdermal drug delivery with electroporation. Recent Pat Drug Deliv Formul. 2008;2:51–7.

    Article  CAS  PubMed  Google Scholar 

  75. Queiroz MLB, Shanmugam S, Santos LNS, Campos CA, Santos AM, Batista MS, Araújo AAS, Serafini MR. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review. Expert Opin Ther Pat. 2020;30:433–52.

    Article  CAS  PubMed  Google Scholar 

  76. Aljuffali IA, Lin YK, Fang JY. Noninvasive approach for enhancing small interfering RNA delivery percutaneously. Expert Opin Drug Deliv. 2016;13:265–80.

    Article  CAS  PubMed  Google Scholar 

  77. Puri A, Nguyen HX, Banga AK. Microneedle-mediated intradermal delivery of epigallocatechin-3-gallate. Int J Cosmet Sci. 2016;38:512–23.

    Article  CAS  PubMed  Google Scholar 

  78. Chiu YH, Wu YW, Hung JI, Chen MC. Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater. 2021;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  79. Fang CL, Aljuffali IA, Li YC, Fang JY. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5:991–1006.

    Article  CAS  PubMed  Google Scholar 

  80. Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv. 2020;17:49–60.

    Article  CAS  PubMed  Google Scholar 

  81. Zorn-Kruppa M, Vidal-y-Sy S, Houdek P, Wladykowski E, Grzybowski S, Gruber R, Gorzelanny C, Harcup J, Schneider SW, Majumdar A, Brandner JM. Tight junction barriers in human hair follicles—role of claudin-1. Sci Rep. 2018;8:12800.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm. 2020;583:119398.

    Article  CAS  PubMed  Google Scholar 

  83. Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations—evolution of the technology over the last three decades. J Control Release. 2016;242:126–40.

    Article  CAS  PubMed  Google Scholar 

  84. Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: a revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech. 2021;23:7.

    Article  PubMed  Google Scholar 

  85. Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine. 2021;16:2465–89.

    Article  PubMed  Google Scholar 

  86. Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Castro R, Veiga F. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res. 2021;38:947–70.

    Article  CAS  PubMed  Google Scholar 

  87. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm. 2019;555:49–62.

    Article  CAS  PubMed  Google Scholar 

  88. Muzzalupo R, Mazzotta E. Do niosomes have a place in the field of drug delivery? Expert Opin Drug Deliv. 2019;16:1145–7.

    Article  CAS  PubMed  Google Scholar 

  89. Yotsumoto K, Ishii K, Kokubo M, Yasuoka S. Improvement of the skin penetration of hydrophobic drugs by polymeric micelles. Int J Pharm. 2018;553:132–40.

    Article  CAS  PubMed  Google Scholar 

  90. Kandekar SG, Singhal M, Sonaje KB, Kalia YN. Polymeric micelle nanocarriers for targeted epidermal delivery of the hedgehog pathway inhibitor vismodegib: formulation development and cutaneous biodistribution in human skin. Expert Opin Drug Deliv. 2019;16:667–74.

    Article  CAS  PubMed  Google Scholar 

  91. Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-Silva M, Veiga F, Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019;16:313–30.

    Article  CAS  PubMed  Google Scholar 

  92. Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–25.

    Article  CAS  PubMed  Google Scholar 

  93. Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, Severino P, Paganelli MO, Chaud MV, Silva AM. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022;8:e08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications—a review. Int J Biol Macromol. 2021;192:1240–55.

    Article  CAS  PubMed  Google Scholar 

  96. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dave K, Krishna Venuganti VV. Dendritic polymers for dermal drug delivery. Ther Deliv. 2017;8:1077–96.

    Article  CAS  PubMed  Google Scholar 

  98. Dhaval M, Makwana J, Sakariya E, Dudhat K. Drug nanocrystals: a comprehensive review with current regulatory guidelines. Curr Drug Deliv. 2020;17:470–82.

    Article  CAS  PubMed  Google Scholar 

  99. Parmar PK, Wadhawan J, Bansal AK. Pharmaceutical nanocrystals: a promising approach for improved topical drug delivery. Drug Discov Today. 2021;26:2329–49.

    Article  CAS  PubMed  Google Scholar 

  100. Pelikh O, Stahr PI, Huang J, Gerst M, Scholz P, Dietrich H, Geisel N, Keck CM. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm. 2018;128:170–8.

    Article  CAS  PubMed  Google Scholar 

  101. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today. 2019;24:1405–12.

    Article  CAS  PubMed  Google Scholar 

  102. Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv. 2020;17:1781–805.

    Article  CAS  PubMed  Google Scholar 

  103. Fang JY, Hung CF, Hwang TL, Huang YL. Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J Drug Target. 2005;13:19–27.

    Article  CAS  PubMed  Google Scholar 

  104. Chen G, Li D, Jin Y, Zhang W, Teng L, Bunt C, Wen J. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin. Drug Dev Ind Pharm. 2014;40:260–5.

    Article  CAS  PubMed  Google Scholar 

  105. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hsieh WC, Fang CW, Suhail M, Vu QL, Chuang CH, Wu PC. Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery. Int J Pharm. 2021;607:121030.

    Article  CAS  PubMed  Google Scholar 

  107. Fang JY, Hwang TL, Huang YL, Fang CL. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int J Pharm. 2006;310:131–8.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, Liao B, Ying H, Ravichandran N, Du Q. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (−epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater. 2017;105:2416–25.

    Article  CAS  PubMed  Google Scholar 

  109. Das S, Ng WK, Tan RB. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles. Nanotechnology. 2014;25:105101.

    Article  PubMed  Google Scholar 

  110. Liao B, Ying H, Yu C, Fan Z, Zhang W, Shi J, Ying H, Ravichandran N, Xu Y, Yin J, Jiang Y, Du Q. (−)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int J Pharm. 2016;512:22–31.

    Article  CAS  PubMed  Google Scholar 

  111. El-Kayal M, Nasr M, Elkheshen S, Mortada N. Colloidal (−)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: a comprehensive experimental study with preclinical investigation. Eur J Pharm Sci. 2019;137:104972.

    Article  CAS  PubMed  Google Scholar 

  112. Sinsinwar S, Vadivel V. Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: investigation of their anti-infective efficacy through in vitro and in vivo studies. Int J Pharm. 2021;609:121130.

    Article  CAS  PubMed  Google Scholar 

  113. Perra M, Lozano-Sánchez J, Leyva-Jiménez FJ, Segura-Carretero A, Pedraz JL, Bacchetta G, Muntoni A, De Gioannis G, Manca ML, Manconi M. Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. Biomed Pharmacother. 2021;142:111959.

    Article  CAS  PubMed  Google Scholar 

  114. Li D, Martini N, Liu M, Falconer JR, Locke M, Wu Z, Wen J. Non-ionic surfactant vesicles as a carrier system for dermal delivery of (+)-catechin and their antioxidant effects. J Drug Target. 2021;29:310–22.

    Article  CAS  PubMed  Google Scholar 

  115. Casiraghi A, Franzè S, Selmin F, Dazio V, Minghetti P. Investigation of the effect of different emulsifiers on the transdermal delivery of EGCG entrapped in a polymeric micelle system. Planta Med. 2017;83:405–11.

    CAS  PubMed  Google Scholar 

  116. Rosita N, Meitasari VA, Rianti MC, Hariyadi DM, Miatmoko A. Enhancing skin penetration of epigallocatechin gallate by modifying partition coefficient using reverse micelle method. Ther Deliv. 2019;10:409–17.

    Article  CAS  PubMed  Google Scholar 

  117. Gavin PD, Simon LS, Schlagheck T, Smith AJ, Krishnarajah J. A Phase I study of the pharmacokinetics, safety and tolerability of a novel tocopheryl phosphate mixture/oxymorphone transdermal patch system. Pain Manag. 2017;7:499–512.

    Article  PubMed  Google Scholar 

  118. Gavin PD, El-Tamimy M, Keah HH, Boyd BJ. Tocopheryl phosphate mixture (TPM) as a novel lipid-based transdermal drug delivery carrier: formulation and evaluation. Drug Deliv Transl Res. 2017;7:53–65.

    Article  CAS  PubMed  Google Scholar 

  119. Scalia S, Trotta V, Bianchi A. In vivo human skin penetration of (−)-epigallocatechin-3-gallate from topical formulations. Acta Pharm. 2014;64:257–65.

    Article  CAS  PubMed  Google Scholar 

  120. Zillich OV, Schweiggert-Weisz U, Hasenkopf K, Eisner P, Kerscher M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int J Cosmet Sci. 2013;35:491–501.

    Article  CAS  PubMed  Google Scholar 

  121. dal Belo SE, Gaspar LR, Maia Campos PM, Marty JP. Skin penetration of epigallocatechin-3-gallate and quercetin from green tea and Ginkgo biloba extracts vehiculated in cosmetic formulations. Skin Pharmacol Physiol. 2009;22:299–304.

    Article  Google Scholar 

  122. Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm. 2022;615:121488.

    Article  PubMed  Google Scholar 

  123. Lin YH, Tsai MJ, Fang YP, Fu YS, Huang YB, Wu PC. Microemulsion formulation design and evaluation for hydrophobic compound: catechin topical application. Colloids Surf B Biointerfaces. 2018;161:121–8.

    Article  CAS  PubMed  Google Scholar 

  124. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci Rep. 2021;11:20851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tow WK, Goh AP, Sundralingam U, Palanisamy UD, Sivasothy Y. Flavonoid composition and pharmacological properties of Elaeis guineensis Jacq. Leaf extracts: a systematic review Pharmaceuticals. 2021;14:961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mittal A, Sara UV, Ali A, Aqil M. Status of fatty acids as skin penetration enhancers—a review. Curr Drug Deliv. 2009;6:274–9.

    Article  CAS  PubMed  Google Scholar 

  127. Marepally S, Boakye CH, Shah PP, Etukala JR, Vemuri A, Singh M. Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery. PLoS ONE. 2013;8:e82581.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen J, Wei N, Lopez-Garcia M, Ambrose D, Lee J, Annelin C, Peterson T. Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm. 2017;117:286–91.

    Article  CAS  PubMed  Google Scholar 

  129. Puglia C, Offerta A, Tirendi GG, Tarico MS, Curreri S, Bonina F, Perrotta RE. Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv. 2016;23:36–40.

    Article  CAS  PubMed  Google Scholar 

  130. Hamishehkar H, Shokri J, Fallahi S, Jahangiri A, Ghanbarzadeh S, Kouhsoltani M. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Dev Ind Pharm. 2015;41:1640–6.

    Article  CAS  PubMed  Google Scholar 

  131. Srivastava AK, Bhatnagar P, Singh M, Mishra S, Kumar P, Shukla Y, Gupta KC. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int J Nanomed. 2013;8:1451–62.

    Google Scholar 

  132. Chamcheu JC, Siddiqui IA, Adhami VM, Esnault S, Bharali DJ, Babatunde AS, Adame S, Massey RJ, Wood GS, Longley BJ, Mousa SA, Mukhtar H. Chitosan-based nanoformulated (−)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int J Nanomed. 2018;13:4189–206.

    Article  CAS  Google Scholar 

  133. Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer peptide and protein dendrimers: a cross-sectional analysis. Chem Rev. 2019;119:11391–441.

    Article  PubMed  Google Scholar 

  134. Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, Parekh HS, Mutalik S. Skin Delivery of EGCG and silibinin: potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech. 2017;18:2346–57.

    Article  CAS  PubMed  Google Scholar 

  135. Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, Schaefer UF, Lehr CM. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141:85–92.

    Article  CAS  PubMed  Google Scholar 

  136. Badie H, Abbas H. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation. Drug Dev Ind Pharm. 2018;44:2013–25.

    Article  CAS  PubMed  Google Scholar 

  137. Arias EM, Guiró P, Rodriguez-Abreu C, Solans C, Escribano-Ferrer E, García-Celma MJ. Cubic liquid crystalline structures in diluted, concentrated and highly concentrated emulsions for topical application: influence on drug release and human skin permeation. Int J Pharm. 2019;569:118531.

    Article  CAS  PubMed  Google Scholar 

  138. Kadhum WR, Sekiguchi S, Hijikuro I, Todo H, Sugibayashi K. A novel chemical enhancer approach for transdermal drug delivery with C17-monoglycerol ester liquid crystal-forming lipid. J Oleo Sci. 2017;66:443–54.

    Article  CAS  PubMed  Google Scholar 

  139. Fornasier M, Pireddu R, Del Giudice A, Sinico C, Nylander T, Schillén K, Galantini L, Murgia S. Tuning lipid structure by bile salts: hexosomes for topical administration of catechin. Colloids Surf B Biointerfaces. 2021;199:111564.

    Article  CAS  PubMed  Google Scholar 

  140. Breuckmann P, Meinke MC, Jaenicke T, Krutmann J, Rasulev U, Keck CM, Müller RH, Klein AL, Lademann J, Patzelt A. Influence of nanocrystal size on the in vivo absorption kinetics of caffeine after topical application. Eur J Pharm Biopharm. 2021;167:57–64.

    Article  CAS  PubMed  Google Scholar 

  141. Klein AL, Lubda M, Specht D, Pyo SM, Busch L, Lademann J, Meinke MC, Beckers I, von Hagen J, Keck CM, Patzelt A. Microdialysis on ex vivo porcine ear skin can validly study dermal penetration including the fraction of transfollicular penetration—demonstrated on caffeine nanocrystals. Nanomaterials. 2021;11:2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ministry of Science and Technology of Taiwan (MOST-110-2330-B-182-011-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Aljuffali IA: editing and writing—original draft preparation. Lin CH: conceptualization and writing—original draft preparation. Yang SC: review. Alalaiwe A: guiding. Fang JY: supervision and review.

Corresponding author

Correspondence to Jia-You Fang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Responsible Editor: Jayachandra Babu Ramapuram and Ashana Puri

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ibrahim A. Aljuffali and Chih-Hung Lin contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljuffali, I.A., Lin, CH., Yang, SC. et al. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 23, 187 (2022). https://doi.org/10.1208/s12249-022-02344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02344-3

Keywords

Navigation