Skip to main content
Log in

Formulation and Physicochemical and Biological Characterization of Etoposide-Loaded Submicron Emulsions with Biosurfactant of Sophorolipids

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Etoposide (ETO), a traditional anticancer chemotherapeutic agent, is commercialized in oral soft gelatin capsules and non-aqueous parenteral solutions form. Novel formulation application and new excipients exploration are needed to improve the water-solubility and comfort of the drug administration. In the present study, novel etoposide-loaded submicron emulsions (ESE) with the biosurfactants of acidic sophorolipid (ASL) and lactonic sophorolipid (LSL) instead of the chemical surfactant of Tween-80 were prepared and characterized. Firstly, parameters of medium-chain triglyceride: long-chain triglyceride (MCT:LCT), lecithin concentration, homogenization pressure and cycle, and type and concentration of surfactants were investigated to optimize the formation of ESEs. Then the physicochemical properties, antitumor activity, stability, and security of ESEs were compared. The results showed that ASL performed the best properties and activities than Tween-80 and LSL in ESE formation. ASL-ESE showed higher drug loading capacity, slower release rate, and significantly increased antitumor activity against ovarian cancer cell line A2780 via apoptosis than Tween-ESE and commercial ETO injection. Besides, both ASL-ESE and Tween-ESE caused no hemolysis, and the safe dose of ASL was 2.14-fold that of Tween-80 in the hemolysis test, making ASL more reliable for drug delivery applications. Furthermore, ASL-ESE exhibited equivalent long-term and autoclaving stability to Tween-ESE. These results thus suggested the excellent competences of ASL in ESE formation, efficacy enhancement, and safety improvement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ETO:

Etoposide

SE:

Submicron emulsion

ESE:

Etoposide-loaded submicron emulsions

SLs:

Sophorolipids

ASL:

Acidic sophorolipid

LSL:

Lactonic sophorolipid

PDI:

Polydispersity index

RLC:

Relative loading capacity

EE:

Entrapment efficiency

References

  1. Sonabend AM, Carminucci AS, Amendolara BJ, Bansal M, Leung R, Lei L, et al. Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma. Neuro Oncol. 2014;16(9):1210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alsalhi A, Ayon NJ, Sikder S, Youan BBC. Self-assembled nanomicelles to enhance solubility and anticancer activity of etoposide. Assay Drug Dev Techn. 2021;19(8):526–38.

    Article  CAS  Google Scholar 

  3. Ellis AG, Crinis NA, Webster LK. Inhibition of etoposide elimination in the isolated perfused rat liver by Cremophor EL and Tween 80. Cancer Chemoth Pharm. 1996;38(1):81–7.

    Article  CAS  Google Scholar 

  4. Jelinek A, Klocking HP. In vitro toxicity of surfactants in U937 cells: cell membrane integrity and mitochondrial function. Exp Toxicol Pathol. 1998;50:472–6.

    Article  CAS  PubMed  Google Scholar 

  5. Abdellatif AAH, Aldhafeeri MA, Alharbi WH, Alharbi FH, Almutiri W, Amin MA, et al. Freeze-drying ethylcellulose microparticles loaded with etoposide for in vitro fast dissolution and in vitro cytotoxicity against cancer cell types, MCF-7 and Caco-2. Appl Sci. 2021;11(19):9066.

    Article  CAS  Google Scholar 

  6. Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility-permeability interplay. J Pharm Sci-Us. 2015;104(9):2941–7.

    Article  CAS  Google Scholar 

  7. Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion based nanostructures for drug delivery. Front Nanotechnol. 2022;98:1–21.

    Google Scholar 

  8. Chen XH, Zhu WY, Liu H, Deng FJ, Wang WT, Qin LH. Preparation of injectable clopidogrel loaded submicron emulsion for enhancing physicochemical stability and anti-thrombotic efficacy. Int J Pharmaceut. 2021;611: 121223.

    Google Scholar 

  9. Liu XL, Zhang Y, Tang X, Zhang HY. Determination of entrapment efficiency and drug phase distribution of submicron emulsions loaded silybin. J Microencapsul. 2009;26(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yordanov G, Skrobanska R, Evangelatov A. Colloidal formulations of etoposide based on poly (butyl cyanoacrylate) nanoparticles: preparation, physicochemical properties and cytotoxicity. Colloid Surface B. 2013;101:215–22.

    Article  CAS  Google Scholar 

  11. Rodrigues LR. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interf Sci. 2015;449:304–16.

    Article  CAS  Google Scholar 

  12. Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, et al. A curcumin-sophorolipid nanocomplex inhibits candida albicans filamentation and biofilm development. Colloid Surface B. 2021;200: 111617.

    Article  CAS  Google Scholar 

  13. Ma XJ, Li H, Song X. Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. Sophorolipid CGMCC 1576. J Colloid Interf Sci. 2012;376(1):165–172.

  14. Zhang HM, Zhou RG, Yu ZQ, Ma XJ, Yao RS. Pretreatment of sophorolipid fermentation broth and isolation and purification of sophorolipids with different structures. Chem Ind Eng Pro. 2020;39(10):4140–6.

    Google Scholar 

  15. Qin LH, Niu YW, Wang YM, Chen XM. Combination of phospholipid complex and submicron emulsion techniques for improving oral bioavailability and therapeutic efficacy of water-insoluble drug. Mol Pharmaceut. 2018;15(3):1238–47.

    Article  CAS  Google Scholar 

  16. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  CAS  PubMed  Google Scholar 

  17. Wang MJ, He K, Li J, Shen T, Li Y, Xu YT, et al. Dual pH-responsive charge-reversal and photo-crosslinkable polymer nanoparticles for controlled drug release. J Biomat Sci-Polym E. 2020;31(7):849–68.

    Article  CAS  Google Scholar 

  18. Li WQ, Lin X, Yang ZH, Zhang W, Ren T, Qu FM, et al. A bufadienolide-loaded submicron emulsion for oral administration: stability, antitumor efficacy and toxicity. Int J Pharmaceut. 2015;479(1):52–62.

    Article  CAS  Google Scholar 

  19. Wang YC, Ma YY, Zheng Y, Song J, Yang X, Bi C, et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int J Pharmaceut. 2013;441(1–2):728–35.

    Article  CAS  Google Scholar 

  20. Ortiz de Solorzano I, Alejo T, Abad M, Carlos BA, Mendoza G, Andreu V, et al. Cleavable and thermo-responsive hybrid nanoparticles for on demand drug delivery. J Colloid Interf Sci. 2019;533:171–181.

  21. Khedri A, Khaghani S, Kheirollah A, Babaahmadiet RH, Shadboorestan A, Zangooei M, et al. Signaling

  22. crosstalk of FHIT. p53, and p38 in etoposide-inducedapoptosis in MCF-7 cells. J Cell Biochem. 2019;120(6):9125–37.

    Article  Google Scholar 

  23. Bock TK, Muller BW. A novel assay to determine the hemolytic activity of drugs incorporated in colloidal carrier systems. Pharm Res-Dordr. 1994;11(4):589–91.

    Article  CAS  Google Scholar 

  24. Goindi S, Kaur R, Kaur R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: development, ex-vivo and in-vivo evaluation. Int J Pharmaceut. 2015;495(2):913–23.

    Article  CAS  Google Scholar 

  25. Trang TTT, Mariatti M, Badrul HY, Masakazu K, Nguyen XTT, Zuratul AAH, et al. Drug release profile study of gentamicin encapsulated poly (lactic acid) microspheres for drug delivery. Mater Today: Proceedings. 2019;17:836–45.

    CAS  Google Scholar 

  26. Saadati R, Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: In vitro and in vivo evaluation. Int J Pharmaceut. 2014;464(1–2):135–44.

    Article  CAS  Google Scholar 

  27. Wang ZJ, Liang P, He XL, Wu B, Liu Q, Xu ZP, et al. Etoposide loaded layered double hydroxide

  28. nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo. Nanoscale. 2018;10(27):13106–13121.

  29. Jain J, Fernandes C, Patravale V. Formulation development of parenteral phospholipid-based microemulsion of etoposide. AAPS PharmSciTech. 2010;11(2):826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Solano AGR, de Fátima PA, Pinto FCH, Ferreira LGR, de Oliveira Barbosa LA, Fialho SL, et al. Development and evaluation of sustained-release etoposide-loaded poly(ε-caprolactone) implants. AAPS PharmSciTech. 2013;14(2):890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patlolla RR, Vobalaboina V. Pharmacokinetics and tissue distribution of etoposide delivered in parenteral emulsion. J Pharm Sci-Us. 2005;94(2):437–45.

    Article  CAS  Google Scholar 

  32. Tian LL, He HB, Tang X. Stability and degradation kinetics of etoposide-loaded parenteral lipid emulsion. J Pharm Sci-Us. 2017;96(7):1719–28.

    Article  Google Scholar 

  33. Qu D, Wang LX, Liu M, Shen SY, Li T, Liu YP, et al. Oral nanomedicine based on multicomponent microemulsions for drug resistant breast cancer treatment. Biomacromol. 2017;18(4):1268–80.

    Article  CAS  Google Scholar 

  34. Brown BS, Patanam T, Mobli K, Celia C, Zage P, Bean AJ, et al. Etoposide-loaded immunoliposomes as active targeting agents for GD2 positive malignancies. Cancer Bio Ther. 2014;15:851–61.

    Article  CAS  Google Scholar 

  35. Tian LL, Tang X, He HB, Wang J. Preparation and in vitro and in vivo evaluation of etoposide submicro emulsion for intravenous injection. Acta Pharmaceutica Sinica. 2007;42(8):892–7.

    CAS  PubMed  Google Scholar 

  36. Nguyen TTL, Edelen A, Neighbors B, Sabatini DA. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interf Sci. 2010;348(2):498–504.

    Article  CAS  Google Scholar 

  37. Nguyen TT, Sabatini DA. Characterization and emulsification properties of rhamnolipid and sophorolipid

  38. biosurfactants and their applications. Int J Mol Sci. 2011;12(2):1232–44.

    Article  Google Scholar 

  39. Kasture MB, Patel P, Prabhune AA, Ramana CV, Kulkarni AA, Prasad BLV, et al. Synthesis of silver

  40. nanoparticles by sophorolipids. effect of temperature and sophorolipid structure on the size of particles. J Chem Sci. 2008;120(6):515–20.

    Article  Google Scholar 

  41. Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV. A direct method for the preparation of

  42. glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of waterre-dispersible silver nanoparticles and their antibacterial activity. New J Chem. 2009;33(3):646–652.

  43. Singh S, D’Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J chem. 2010;34(2):294–301.

    Article  CAS  Google Scholar 

  44. Hirata Y, Ryu M, Igarashi K, Nagatsuka A, Furuta T, Kanaya S, et al. Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities. J Oleo Sci. 2009;58(11):565–72.

    Article  CAS  PubMed  Google Scholar 

  45. Smith OEP, Waters LJ, Small W, Mellor S. CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants. Colloid Surface B. 2022;211: 112320.

    Article  CAS  Google Scholar 

  46. Fu SL, Wallner SR, Bowne WB, Hagler MD, Zenilman ME, Gross R, et al. Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J Surg Res. 2008;148(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Guo W, Ma XJ, Li JS, Song X. In vitro and in vivo anticancer activity of sophorolipids to human cervical cancer. Appl Biochem Biotechn. 2017;181(4):1372–87.

    Article  CAS  Google Scholar 

  48. Marcelino PRF, Ortiz J, da Silva SS, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloid Surface B. 2021;207: 112029.

    Article  Google Scholar 

  49. Chen H, Shi S, Zhao MM, Zhang L, He HB, Tang X. A lyophilized etoposide submicron emulsion with a

  50. high drug loading for intravenous injection. preparation, evaluation, and pharmacokinetics in rats. Drug Dev Ind Pharm. 2010;36(12):1444–53.

    Article  Google Scholar 

  51. Zhang XY, Wei Y, Cao ZJ, Xu Y, Cong L, Zhao MQ, et al. Aprepitant Intravenous Emulsion Based on Ion Pairing/Phospholipid Complex for Improving Physical and Chemical Stability During Thermal Sterilization. AAPS PharmSciTech. 2020;21(3):1–12.

    Article  Google Scholar 

  52. Shah S, Pal A, Gude R, Devi S. A novel approach to prepare etoposide-loaded poly(N-vinyl

  53. caprolactam-co-methylmethacrylate) copolymeric nanoparticles and their controlled release studies. J Appl Polym Sci. 2013, 127(6):4991–4999.

Download references

Funding

We wish to acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities of China [JZ2021HGTB0114], the National Natural Science Foundation of China [31400049] and the Key Research and development program of Anhui Province [202004a06020041].

Author information

Authors and Affiliations

Authors

Contributions

Xiaojing Ma: methodology, supervision, writing-reviewing and editing, funding acquisition. Tong Wang: validation, formal analysis, investigation. Junqian Shao: validation, investigation and writing-original draft. Zequan Yu: fix the article format and check the article errors. Jun Chu: resources. Huixia Zhu: resources. Risheng Yao: conceptualization.

Corresponding author

Correspondence to Xiaojing Ma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Sophorolipids and Tween-80-based etoposide submicron emulsions (ESEs) are prepared.

• Acidic SL (ASL) is more beneficial than Tween-80 in high-quality ESE preparation.

• ASL-ESE exhibits greater antitumor efficacy, stability, and safety than Tween-ESE.

• ASL performs the competences in ESE formation and drug delivery system exploration.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, T., Yu, Z. et al. Formulation and Physicochemical and Biological Characterization of Etoposide-Loaded Submicron Emulsions with Biosurfactant of Sophorolipids. AAPS PharmSciTech 23, 181 (2022). https://doi.org/10.1208/s12249-022-02329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02329-2

KEY WORDS

Navigation