Skip to main content

Advertisement

Log in

Mucus-Penetrating Alginate-Chitosan Nanoparticles Loaded with Berberine Hydrochloride for Oral Delivery to the Inflammation Site of Ulcerative Colitis

  • Research Article
  • Theme: Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 09 August 2022

This article has been updated

Abstract

The rectal enemas of berberine hydrochloride (BH) have emerged as one of the most effective strategies in the clinical treatment of ulcerative colitis (UC). However, oral dosages of BH exhibit a poor anti-inflammatory effect of UC, which may attribute to premature absorption of BH by the upper gastrointestinal tract. Moreover, the thick colonic mucus layer obstructs the penetration of the drug, resulting in low bioavailability to the inflammatory site of the colon. The aim of this study was to develop the mucus-penetrating sodium alginate-chitosan nanoparticles (SA-CS NPs) for oral delivery of BH to the site of colonic ulcer lesions. BH-loaded SA-CS NPs were developed through the ionic gelation method and analyzed for physicochemical characteristics, release performance, penetrability, site retention, and therapeutic efficacy. The results showed that the NPs have a particle size of 257 nm with a negative charge, presenting desired pH-dependent release behavior. The permeation studies elucidated that negatively charged SA-CS NPs had 2.9 times higher mucus penetration ability than positively charged CS NPs. An ex vivo retention study indicated the high retention of BH-SA-CS NPs at the colon site for more than 16 h. In vivo therapeutic effectiveness demonstrated that the prepared NPs could not only alleviate colonic injury by decreasing the disease activity index and colon mucosa damage index, but also improve the immunologic function by decreasing the spleen index. In conclusion, the BH-SA-CS NPs could enhance the mucus permeability and deliver drugs to the colonic inflammation site, providing new insights into improving the therapeutic effect of UC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Adams SM, Bornemann PH. Ulcerative colitis. American Family Physician. 2013;87(10):699–705.

    PubMed  Google Scholar 

  2. Bilsborough J, Targan SR, Snapper SB. Therapeutic targets in inflammatory bowel disease: current and future. American Journal of Gastroenterology Supplements. 2016;3(3):27–37. https://doi.org/10.1038/ajgsup.2016.18.

    Article  CAS  Google Scholar 

  3. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet (London, England). 2017;390(10114):2769–78. https://doi.org/10.1016/s0140-6736(17)32448-0.

    Article  Google Scholar 

  4. Neurath MF. Current and emerging therapeutic targets for IBD. Nature Reviews. Gastroenterology & Hepatology. 2017;14(5):269–78. https://doi.org/10.1038/nrgastro.2016.208.

    Article  CAS  Google Scholar 

  5. Potdar D, Hirwani RR, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia. 2012;83(5):817–30. https://doi.org/10.1016/f34hf9.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Liu X, Hua W, Wei Q, Fang X, Zhao Z, et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. International Immunopharmacology. 2018;57:121–31. https://doi.org/10.1016/j.intimp.2018.01.049.

    Article  CAS  PubMed  Google Scholar 

  7. Cui H, Cai Y, Wang L, Jia B, Li J, Zhao S, et al. Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Frontiers in Pharmacology. 2018;9:571. https://doi.org/10.3389/fphar.2018.00571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habtemariam S. Berberine and inflammatory bowel disease: a concise review. Pharmacological Research. 2016;113(Pt A):592–9. https://doi.org/10.1016/j.phrs.2016.09.041.

    Article  CAS  PubMed  Google Scholar 

  9. Yu M, Jin X, Liang C, Bu F, Pan D, He Q, et al. Berberine for diarrhea in children and adults: a systematic review and meta-analysis. Therapeutic Advances in Gastroenterology. 2020;13:1–19. https://doi.org/10.1177/1756284820961299.

    Article  Google Scholar 

  10. Zeeshan M, Ali H, Khan S, Khan SA, Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. International Journal of Pharmaceutics. 2019;558:201–14. https://doi.org/10.1016/j.ijpharm.2018.12.074.

    Article  CAS  PubMed  Google Scholar 

  11. Lee SH, Bajracharya R, Min JY, Han JW, Park BJ, Han HK. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12(1):E68. https://doi.org/10.3390/pharmaceutics12010068.

    Article  CAS  PubMed  Google Scholar 

  12. Yulian S, Shuangshuang Z, Wenjie L, et al. A novel enteric positioning osmotic pump capsule-based controlled release system of sinomenine hydrochloride: in vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology. 2019;49:188–94. https://doi.org/10.1016/j.jddst.2018.11.005.

    Article  CAS  Google Scholar 

  13. Jin D, Wang B, Hu R, Su D, Chen J, Zhou H, et al. A novel colon-specific osmotic pump capsule of Panax notoginseng saponins (PNS): formulation, optimization, and in vitro-in vivo evaluation. AAPS PharmSciTech. 2018;19(5):2322–9. https://doi.org/10.1208/s12249-018-1068-2.

    Article  CAS  PubMed  Google Scholar 

  14. Gao J, Fan D, Song P, Zhang S, Liu X. Preparation and application of pH-responsive composite hydrogel beads as potential delivery carrier candidates for controlled release of berberine hydrochloride. Royal Society Open Science. 2020;7(11):200676. https://doi.org/10.1098/gpw2z7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin X, Tan P, Luo H, Lan J, Shi Y, Zhang Y, et al. Study on the release behaviors of berberine hydrochloride based on sandwich nanostructure and shape memory effect. Materials Science & Engineering. C, Materials for Biological Applications. 2020;109:110541. https://doi.org/10.1016/j.msec.2019.110541.

    Article  CAS  Google Scholar 

  16. Boegh M, Nielsen HM. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties. Basic & Clinical Pharmacology & Toxicology. 2015;116(3):179–86. https://doi.org/10.1111/bcpt.12342.

    Article  CAS  Google Scholar 

  17. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2001;280(5):G922–9. https://doi.org/10.1152/gkgbgw.

    Article  CAS  PubMed  Google Scholar 

  18. Dünnhaupt S, Kammona O, Waldner C, Kiparissides C, Bernkop-Schnürch A. Nano-carrier systems: strategies to overcome the mucus gel barrier. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V. 2015;96:447–53. https://doi.org/10.1016/f783n6.

    Article  Google Scholar 

  19. Wu J, Zheng Y, Liu M, Shan W, Zhang Z, Huang Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS applied materials & interfaces. 2018;10(12):9916–28. https://doi.org/10.1021/gdcr4c.

    Article  CAS  Google Scholar 

  20. Suk JS, Lai SK, Wang YY, Ensign LM, Zeitlin PL, Boyle MP, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials. 2009;30(13):2591–7. https://doi.org/10.1016/j.biomaterials.2008.12.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu M, Zhang J, Shan W, Huang Y. Developments of mucus penetrating nanoparticles. Asian Journal of Pharmaceutical Sciences. 2015;10(4):275–82. https://doi.org/10.1016/ggzgxf.

    Article  Google Scholar 

  22. Alsmadi MM, Obaidat RM, Alnaief M, Albiss BA, Hailat N. Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate nanoporous carriers loaded with cisplatin for lung cancer treatment. AAPS PharmSciTech. 2020;21(5):191. https://doi.org/10.1208/s12249-020-01735-8.

    Article  CAS  PubMed  Google Scholar 

  23. Wu L, Shan W, Zhang Z, Huang Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Advanced Drug Delivery Reviews. 2018;124:150–63. https://doi.org/10.1016/j.addr.2017.10.001.

    Article  CAS  PubMed  Google Scholar 

  24. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews. 2009;61(2):158–71. https://doi.org/10.1016/cw6b2n.

    Article  CAS  PubMed  Google Scholar 

  25. Agüero L, Zaldivar-Silva D, Peña L, Dias ML. Alginate microparticles as oral colon drug delivery device: a review. Carbohydrate Polymers. 2017;168:32–43. https://doi.org/10.1016/gkqffh.

    Article  PubMed  Google Scholar 

  26. Zhou Y, Liu S, Ming J, Li Y, Deng M, He B. Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture. Drug Development and Industrial Pharmacy. 2017;43(10):1703–14. https://doi.org/10.1080/gmt3g9.

    Article  CAS  PubMed  Google Scholar 

  27. Abo El-Enin HA, Elkomy MH, Naguib IA, Ahmed MF, Alsaidan OA, Alsalahat I, et al. Lipid nanocarriers overlaid with chitosan for brain delivery of berberine via the nasal route. Pharmaceuticals. 2022;15(3):281. https://doi.org/10.3390/gpzxnq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tong J, Hou X, Cui D, Chen W, Yao H, Xiong B, et al. A berberine hydrochloride-carboxymethyl chitosan hydrogel protects against Staphylococcus aureus infection in a rat mastitis model. Carbohydrate Polymers. 2022;278:118910. https://doi.org/10.1016/gpzxn6.

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Fan D, Meng L, Miao Y, Yang S, Weng Y, et al. Enhancing effects of chitosan and chitosan hydrochloride on intestinal absorption of berberine in rats. Drug Development and Industrial Pharmacy. 2012;38(1):104–10. https://doi.org/10.3109/dmw63x.

    Article  CAS  PubMed  Google Scholar 

  30. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs. 2015;13(3). https://doi.org/10.3390/f68ch7.

  31. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. Journal of Controlled Release. 2006;114(1):1–14. https://doi.org/10.1016/j.jconrel.2006.04.017.

    Article  CAS  PubMed  Google Scholar 

  32. Haroon HB, Mukherjee D, Anbu J, Teja BV. Thiolated chitosan-Centella asiatica nanocomposite: a potential brain targeting strategy through nasal route. AAPS PharmSciTech. 2021;22(8):251. https://doi.org/10.1208/gpw733.

    Article  CAS  PubMed  Google Scholar 

  33. Lamprecht A, Schäfer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharmaceutical Research. 2001;18(6):788–93. https://doi.org/10.1023/bk82xz.

    Article  CAS  PubMed  Google Scholar 

  34. Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. International Journal of Pharmaceutics. 2013;456(1):31–40. https://doi.org/10.1016/j.ijpharm.2013.08.037.

    Article  CAS  PubMed  Google Scholar 

  35. Zeeshan M, Ali H, Khan S, Mukhtar M, Khan MI, Arshad M. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine (London, England). 2019;14(15):1945–69. https://doi.org/10.2211/gpw739.

    Article  CAS  Google Scholar 

  36. Anderski J, Mahlert L, Mulac D, Langer K. Mucus-penetrating nanoparticles: promising drug delivery systems for the photodynamic therapy of intestinal cancer. European Journal of Pharmaceutics and Biopharmaceutics. 2018;129:1–9. https://doi.org/10.1016/j.ejpb.2018.05.018.

    Article  CAS  PubMed  Google Scholar 

  37. Song Q, Jia J, Niu X, Zheng C, Zhao H, Sun L, et al. An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy. Nanoscale. 2019;11(34):15958–70. https://doi.org/10.1039/gpw74p.

    Article  CAS  PubMed  Google Scholar 

  38. Seibel J, Molzberger AF, Hertrampf T, Laudenbach-Leschowski U, Diel P. Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. European Journal of Nutrition. 2009;48(4):213–20. https://doi.org/10.1007/s00394-009-0004-3.

    Article  CAS  PubMed  Google Scholar 

  39. Sun T, Kwong CHT, Gao C, Wei J, Yue L, Zhang J, et al. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics. 2020;10(22):10106–19. https://doi.org/10.7150/thno.48448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motiei M, Sedlařík V, Lucia LA, Fei H, Münster L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydrate Polymers. 2020;231:115709. https://doi.org/10.1016/j.carbpol.2019.115709.

    Article  CAS  PubMed  Google Scholar 

  41. Nair RS, Morris A, Billa N, Leong CO. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech. 2019;20(2):69. https://doi.org/10.1208/gpw763.

    Article  CAS  PubMed  Google Scholar 

  42. Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. Journal of Controlled Release. 2019;295:174–86. https://doi.org/10.1016/j.jconrel.2018.12.017.

    Article  CAS  PubMed  Google Scholar 

  43. Omer AM, Tamer TM, Hassan MA, Rychter P, Mohy Eldin MS, Koseva N. Development of amphoteric alginate/aminated chitosan coated microbeads for oral protein delivery. International Journal of Biological Macromolecules. 2016;92:362–70. https://doi.org/10.1016/j.ijbiomac.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. International Journal of Biological Macromolecules. 2015;75:409–17. https://doi.org/10.1016/j.ijbiomac.2014.12.052.

    Article  CAS  PubMed  Google Scholar 

  45. Mirtič J, Ilaš J, Kristl J. Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics. Carbohydrate Polymers. 2018;181:93–102. https://doi.org/10.1016/gcrxht.

    Article  PubMed  Google Scholar 

  46. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, et al. Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. Journal of Biomedical Nanotechnology. 2018;14(8):1486–95. https://doi.org/10.1166/jbn.2018.2596.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Liu SQ, Peng H, Yu L, He B, Zhao Q. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. International Immunopharmacology. 2015;28(1):34–43. https://doi.org/10.1016/j.intimp.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  48. Ran F, Lei W, Cui Y, Jiao J, Mao Y, Wang S, et al. Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. Journal of Colloid and Interface Science. 2018;511:57–66. https://doi.org/10.1016/j.jcis.2017.09.088.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Cui Y, Zhao Y, Zhao Q, He B, Zhang Q, et al. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. Journal of Colloid and Interface Science. 2018;513:736–47. https://doi.org/10.1016/j.jcis.2017.11.065.

    Article  CAS  PubMed  Google Scholar 

  50. Huang X, Wang P, Li T, Tian X, Guo W, Xu B, et al. Self-assemblies based on traditional medicine berberine and cinnamic acid for adhesion-induced inhibition multidrug-resistant Staphylococcus aureus. ACS Applied Materials & Interfaces. 2020;12(1):227–37. https://doi.org/10.1021/ggtnkh.

    Article  CAS  Google Scholar 

  51. Chang CH, Huang WY, Lai CH, Hsu YM, Yao YH, Chen TY, et al. Development of novel nanoparticles shelled with heparin for berberine delivery to treat Helicobacter pylori. Acta Biomaterialia. 2011;7(2):593–603. https://doi.org/10.1016/j.actbio.2010.08.028.

    Article  CAS  PubMed  Google Scholar 

  52. Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, et al. Electrospun scaffolds in periodontal wound healing. Polymers. 2021;13(2):307. https://doi.org/10.3390/gpw74t.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ghaffarzadegan R, Khoee S, Rezazadeh S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. DARU Journal of Pharmaceutical Sciences. 2020;28(1):237–52. https://doi.org/10.1007/gpw78s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Subhabrota M, Souvik R, Subhadeep C. Preparation and gamma scintigraphic evaluation of colon specific pellets of ketoprofen prepared by powder layering technology. DARU : Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2011;19(1):47–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin Z, Liu Z, Kang L, Yang A, Zhao H, Yan X, et al. A randomized double-blind placebo-controlled multicenter trial of Bushen Yisui and Ziyin Jiangzhuo formula for constipation in Parkinson disease. Medicine. 2020;99(28):e21145. https://doi.org/10.1097/gpxjgr.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garrait G, Beyssac E, Subirade M. Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles. Journal of Microencapsulation. 2014;31(4):363–72. https://doi.org/10.3109/02652048.2013.858792.

    Article  CAS  PubMed  Google Scholar 

  57. Jin L, Qi H, Gu X, Zhang X, Zhang Y, Zhang X, et al. Effect of sodium alginate type on drug release from chitosan-sodium alginate-based in situ film-forming tablets. AAPS PharmSciTech. 2020;21(2):55. https://doi.org/10.1208/gpw742.

    Article  CAS  PubMed  Google Scholar 

  58. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, et al. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian Journal of Pharmaceutical Sciences. 2017;12(5):418–23. https://doi.org/10.1016/j.ajps.2017.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bukhovets AV, Fotaki N, Khutoryanskiy VV, Moustafine RI. Interpolymer complexes of Eudragit® copolymers as novel carriers for colon-specific drug delivery. Polymers. 2020;12(7):1459. https://doi.org/10.3390/polym12071459.

    Article  CAS  PubMed Central  Google Scholar 

  60. Deng XQ, Zhang HB, Wang GF, Xu D, Zhang WY, Wang QS, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. International Journal of Pharmaceutics. 2019;570:118644. https://doi.org/10.1016/j.ijpharm.2019.118644.

    Article  CAS  PubMed  Google Scholar 

  61. Chandran S, Sanjay KS, Ali Asghar LF. Microspheres with pH modulated release: design and characterization of formulation variables for colonic delivery. Journal of Microencapsulation. 2009;26(5):420–31. https://doi.org/10.1080/dbfz8r.

    Article  CAS  PubMed  Google Scholar 

  62. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2001;70(3):399–421. https://doi.org/10.1016/bmzrtp.

    Article  CAS  Google Scholar 

  63. Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules. 2013;14(6):1732–40. https://doi.org/10.1021/gpw8j4.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang X, Cheng H, Dong W, Zhang M, Liu Q, Wang X, et al. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2018;272:29–38. https://doi.org/10.1016/j.jconrel.2017.12.034.

    Article  CAS  Google Scholar 

  65. Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology. 2013;144(5):967–77. https://doi.org/10.1053/f2jz6t.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Anhui Province Key Laboratory of Pharmaceutical Technology and Application for providing an experimental platform. We thank Prof. BangXing Han from the West Anhui University for valuable scientific advice.

Funding

This project was funded by the National Natural Science Foundation of China (No. 81973488, No. 22003002); Key Project of Natural Science Foundation for the Higher Education Institutions of Anhui Province (GXXT-2020-025(10-4); KJ2019A0451; KJ2020A0382); Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application (2021KFKT04; 2021KFKT07; 2021hxts03); Key Laboratory of Xin’an Medicine (Anhui University of Chinese Medicine), Ministry of Education (No. 2020xayx02); and Natural Science Foundation of Anhui Province (2108085QH371).

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Lingfeng Sun, Xiangjiang Nie, Song Gao, Wenjie Lu

Conducted experiments: Lingfeng Sun, Xiangjiang Nie, Song Gao, Wenjie Lu

Contributed new reagents or analytic tools: Qing Zhang, Wenyou Fang, Shengqi Chen, Rongfeng Hu

Performed data analysis: Lingfeng Sun, Xiangjiang Nie, Song Gao, Wenyou Fang

Wrote or contributed to the writing of the manuscript: Lingfeng Sun, Xiangjiang Nie, Song Gao, Wenjie Lu, Wenyou Fang, Shengqi Chen, Rongfeng Hu

Corresponding authors

Correspondence to Song Gao, Shengqi Chen or Rongfeng Hu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article was updated to correct the author’s name as Lingfeng Sun instead of Linfeng Sun.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Nie, X., Lu, W. et al. Mucus-Penetrating Alginate-Chitosan Nanoparticles Loaded with Berberine Hydrochloride for Oral Delivery to the Inflammation Site of Ulcerative Colitis. AAPS PharmSciTech 23, 179 (2022). https://doi.org/10.1208/s12249-022-02327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02327-4

KEY WORDS

Navigation