Skip to main content

Advertisement

Log in

Construction and Evaluation of Traceable rhES-QDs-M-MS Protein Delivery System: Sustained-Release Properties, Targeted Effect, and Antitumor Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Recombinant human endostatin (rhES) is a protein drug with poor stability and short in vivo circulation time. The present study was therefore aimed at developing sustained-release lung targeted microspheres drug delivery system and evaluating its targeting efficiency using in vivo imaging techniques with quantum dots (QDs) as the imaging material. The oil-soluble QDs were coated with amphiphilic polymers to obtain a polymer-quantum dots micelle (QDs-M) with the potential to stably disperse in water. The rhES and QDs-M were combined using covalent bonds. The rhES-QDs-M microspheres (rhES-QDs-M-MS) were prepared using electrostatic spray technology and also evaluated via in vivo imaging techniques. The pharmacodynamics was further studied in mice. The rhES-QDs-M-MS (4–8 μm) were stable in an aqueous medium with good optical properties. The in vitro studies showed that the rhES-QDs-M-MS had sustained release which was maintained for at least 15 days (cumulative release >80%) without any burst release. The rhES-QDs-M-MS had a very high safety profile and also effectively inhibited the in vitro proliferation of human umbilical vein endothelial cells by about 70%. The pharmacokinetic results showed that the rhES could still be detected at 72 h in the experimental group which meant that the rhES-QDs-M-MS had a significant sustained-release effect. The rhES-QDs-M-MS had a better lung targeting effect and higher antitumor activity compared with the rhES. The traceable rhES-QDs-M-MS served as a promising drug delivery system for the poorly stable rhES proteins and significantly increased its lung-targeted effect, sustained-release properties, and antitumor activities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li K, Shi M, Qin S. Current status and study progress of recombinant human endostatin in cancer treatment. Oncology and Therapy. 2018;6:21–43. https://doi.org/10.1007/s40487-017-0055-1.9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Okoyama YY, Amakrishnan SR. Addition of integrin binding sequence to a mutant human endostatin improves inhibition of tumor growth. Int. J. Cancer. 2004;848:839–48. https://doi.org/10.1002/ijc.20336.

    Article  CAS  Google Scholar 

  3. Sund M, Hamano Y, Sugimoto H, Sudhakar A, Soubasakos M, Yerramalla U, Benjamin LE, Lawler J, Kieran M, Shah A, Kalluri R. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci U S A. 2005;102:2934–9. https://doi.org/10.1073/pnas.0500180102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Jia L, Guo L, Yu M, Sun X, Nie W, Fu Y, Rao C, Wang J. Pharmacokinetics of PEGylated recombinant human endostatin ( M 2 ES ) in rats. Acta Pharmacol Sin. 2015:847–54. https://doi.org/10.1038/aps.2015.16.

  5. Flisiak R, Gomez MR, Fich A, Bataille V, Inchauspé G, Agathon D, J.M. Limacher, efficacy of immunotherapy with TG4040, Peg-Interferon, and Ribavirin in a Phase 2 Study of Patients With Chronic HCV Infection. Gastroenterology. 2014:1–13. https://doi.org/10.1053/j.gastro.2014.03.007.

  6. Ge J, Li C, Zhang J. Long-term remission of recurrent brainstem pilocytic astrocytoma with neuraxis dissemination using recombinant human endostatinafter failure of vincristine and carboplatin. World Neurosurg. 2018;110:397–402. https://doi.org/10.1016/j.wneu.2017.11.150.

    Article  PubMed  Google Scholar 

  7. Nie T, He M, Ge M, Xu J, Ma H. Fabrication and structural regulation of PLLA porous microspheres via phase inversion emulsion and thermally induced phase separation techniques. J. ApplPolym Sci. 2017;134:1–10. https://doi.org/10.1002/app.44885.

    Article  CAS  Google Scholar 

  8. Liu H, Du K, Li D, Du Y, Xi J, Xu Y, Shen Y, Jiang T, Webster TJ. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. International journal of nanomedicine. 2018;13:8379–93. https://doi.org/10.2147/IJN.S181002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardik JP, Shanu M, Gabriela C, Tony T. Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opinion on Drug Discov. 2011;6:559–87. https://doi.org/10.1517/17460441.2011.563296.

    Article  CAS  Google Scholar 

  10. Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab. 2010;11:129–41. https://doi.org/10.2174/138920010791110827.

    Article  CAS  PubMed  Google Scholar 

  11. Vishali DA, Monisha J, Sundari SSK, Moses JA, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. J Control Release. 2019;300:93–101. https://doi.org/10.1016/j.jconrel.2019.02.044.

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotech Adv. 2010;28:325–47. https://doi.org/10.1016/j.biotechadv.2010.01.004.

    Article  CAS  Google Scholar 

  13. Wang M, Yu JH, Hsieh AJ, Rutledge GC. Effect of tethering chemistry of cationic surfactants on clay exfoliation, electrospinning and diameter of PMMA / clay nanocomposite fibers. Polymer. 2010;51:6295–302. https://doi.org/10.1016/j.polymer.2010.10.040.

    Article  CAS  Google Scholar 

  14. Parhizkar M, Reardon PJT, Knowles JC, Browning RJ, Stride E, Pedley RB, Grego T, Edirisinghe M. Performance of novel high throughput multi electrospray systems for forming of polymeric micro / nanoparticles. Mater. Des. 2017;126:73–84. https://doi.org/10.1016/j.matdes.2017.04.029.

    Article  CAS  Google Scholar 

  15. Jadhav A, Wang L, Lawrence C, Padhye R. Study of electrospraying characteristics of polymer solution coating on textile substrate. Adv Mater. 2011;334:710–5. https://doi.org/10.4028/www.scientific.net/AMR.332-334.710.

    Article  CAS  Google Scholar 

  16. Bohr A, Kristensen J, Stride E, Dyas M, Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int J Pharm. 2011;412:59–67. https://doi.org/10.1016/j.ijpharm.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  17. Zamani M, Prabhakaran MP, San E. Protein encapsulated core – shell structured particles prepared by coaxial electrospraying : investigation on material and processing variables. Int J Pharm. 2014;473:134–43. https://doi.org/10.1016/j.ijpharm.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Mumcuoglu D, De Miguel L, Jekhmane S, Siverino C, Nickel J, Mueller TD, Van Leeuwen JP, Van Osch GJ. Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. Mater. SciEng C. 2018;84:271–80. https://doi.org/10.1016/j.msec.2017.11.031.

    Article  CAS  Google Scholar 

  19. Deakin T. Radisotopic characterization as an analytical tool : current status , limitations and future challenges. Bioanalysis. 2015;7:541–55. https://doi.org/10.4155/bio.15.13.

    Article  CAS  PubMed  Google Scholar 

  20. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60:1226–40. https://doi.org/10.1016/j.addr.2008.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zrazhevskiy P, True LD, Gao X. Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat Protoc. 2013;8:1852–69. https://doi.org/10.1038/nprot.2013.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuo CW, Chueh DY, Chen P. Real - time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots. J Nanobiotechnology. 2019:1–10. https://doi.org/10.1186/s12951-019-0453-7.

  23. Zhang Y, Zhao N, Qin Y. Affibody-functionalized Ag2S quantum dots for photoa-coustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale. 2018;10(35):1–21. https://doi.org/10.1039/C8NR02556H.

    Article  Google Scholar 

  24. Kim S, Fisher B, Bawendi M. Type-II Quantum Dots : CdTe / CdSe ( Core / Shell ) and CdSe / ZnTe ( Core / Shell ) Heterostructures. J Am Chem Soc. 2003:11466–7. https://doi.org/10.1021/ja0361749.

  25. James SP, Oldinski RK, MinZhang, Schwartz H. 23-UHMWPE-Hyaluronan Microcomposite Biomaterials[J]. UHMWPE Biomaterials Handbook (Third Edition). 2015:412–33. https://doi.org/10.1016/B978-0-323-35401-1.00023-5.

  26. Hong-mei WEI, Shu-kui QIN, Xiao-jin YIN, Ya-li C. Therapeutic features of endostar, a modified endostatin, on ascites tumor in mice. J South Med Univ. 2010;30:1509–13. https://doi.org/10.1360/972010-923.

    Article  Google Scholar 

  27. Ding XL, Ma S, Wang F, Li D, Liang J. Establishment of an adjusted prognosis analysis model for initially diagnosed non–small-cell lung cancer with brain metastases from Sun Yat-Sen University Cancer Center. Clin Lung Cancer. 2017; https://doi.org/10.1016/j.cllc.2016.12.016.

  28. Bakalova R, Zhelev Z, Aoki I, Ohba H, Kanno I. Silica-shelled single quantum dot micelles asimaging probes with dual or multimodality[J]. Analytical Chemistry. 2006;78(16):5925–32.

    Article  CAS  Google Scholar 

  29. Bentzen EL, Tomlinson ID, Mason J, et al. Surface modification to reduce nonspecific binding of quantum dots in live cell assays[J]. Bioconjugate Chemistry. 2005;16(6):1488–94.

    Article  CAS  Google Scholar 

  30. Yu WW, Chang Y, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers.[J]. Journal of the American Chemical Society. 2007;129(10):2871–9.

    Article  CAS  Google Scholar 

  31. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76. https://doi.org/10.1038/nbt994.

    Article  CAS  PubMed  Google Scholar 

  32. L. CA, RA Sperling, JK. Li, TY. Yang, PY. Li, Design of an amphiphilic polymer for nanoparticle coating and functionalization, Small.4 (2010) 334–341. doi:https://doi.org/10.1002/smll.200700654.

  33. Singh A, Shukla R, Shanker R, Singh S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci. 2015;215:28–45. https://doi.org/10.1016/j.cis.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Yu J, Li J, Kang Q, Shen D, Chen L. Quantum dots based imprinting fluorescent nanosensor for the selective and sensitive detection of phycocyanin : a general imprinting strategy toward proteins. Sensors Actuators B. Chem. 2018;255:268–74. https://doi.org/10.1016/j.snb.2017.08.068.

    Article  CAS  Google Scholar 

  35. Savin M, Mihailescu C, Stan D, Moldovan CA, Stan D, Moldovan CA, Ion M, Baciu I. A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta. 2017;178:910–75. https://doi.org/10.1016/j.talanta.2017.10.045.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao D, Fang Y, Wanga H, He Z. Synthesis and characterization of high-quality water-soluble CdTe: Zn2+quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. Journal of Materials Chemistry. 2011;21:13365–70.

    Article  CAS  Google Scholar 

  37. Ma JJ, Han LJG, HY. Study on the synchronous interactions between different thiol-capped CdTe quantum dots and BSA[J]. Spectroscopy and Spectral. Analysis. 2010;30(4):1039–43.

    CAS  Google Scholar 

  38. Andre C, Guyon C, Thomassin M, Barbier A, Richert L, Guillaume YC. Association mechanism between a series of rodenticide and humic acid: a frontal analysis to support the biological data[J]. Journal of Chromatography B. 2005;820(1):9–14.

    Article  CAS  Google Scholar 

  39. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots[J]. Biochimica et. Biophysica Acta. 2008;1784:1020–7.

    Article  CAS  Google Scholar 

  40. Marek Wiśniewski; Joanna Czarnecka; Paulina Bolibok; Michał Świdziński; Katarzyna Roszek. New insight into the fluorescence quenching of nitrogen-containing carbonaceous quantum dots-from surface chemistry to biomedical applications[J]. Materials (Basel, Switzerland), 2021, Vol. 14(9): 2454

  41. Vu TQ, Lam WY, Hatch EW, Lidke DS. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res. 2015;360:71–86. https://doi.org/10.1007/s00441-014-2087-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang S, Gao X, Shen K, Yang P, Xiulan J. Evaluation of poly(d,l-lactide-co-glycolide) microspheres for the lung-targeting of yuanhuacine, a novel DNA topoisomerase I inhibitor[J]. Journal of Drug Targeting. 2009;17(4):286–93.

    Article  Google Scholar 

  43. Chen XH, Yang ZF, Sun RS, Mo ZY, Jin GY, Wei FH, Hu JM, Guan WD, Zhong NS. Preparation of lung-targeting, emodin-loaded polylactic acid microspheres and their properties[J]. International Journal of Molecular Sciences. 2014;15(4):6241–51.

    Article  Google Scholar 

  44. Chang X, Xing L, Wang Y, Yang C-X, He Y-J, Zhou T-J, Gao X-D, Li L, Hao H-P, Jiang H-L. Monocyte-derived multipotent cell delivered programmed therapeutics to reverse idiopathic pulmonary fibrosis[J]. Science Advances. 2020;6(22):3167.

    Article  Google Scholar 

  45. Wang H, Liu Q, Yang Q, Li CZÁY. Electrospun poly (methyl methacrylate) nanofibers and microparticles. J Mater Sci. 2010:1032–8. https://doi.org/10.1007/s10853-009-4035-1.

  46. Esmeralda VM, Edith PC, Athenea ARE, Alberto LPC. Pectin and chitosan microsphere preparation via a water/oil emulsion and solvent evaporation method for drug delivery[J]. International Journal of Polymeric Materials. 2020;69(7):467–75.

    Article  Google Scholar 

  47. Almería B, Deng W, Fahmy TM, Gomez A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci. 2010;343:125–33. https://doi.org/10.1016/j.jcis.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  48. Lee Y, Johnson PJ, Robbins PT, Bridson RH. Production of nanoparticles-in-microparticles by a double emulsion method: a comprehensive study. Eur J Pharm Biopharm. 2013;83:168–73. https://doi.org/10.1016/j.ejpb.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  49. Miladi K, Sfar S, Fessi H, Elaissari A. Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: from preparation to in vitro studies. Ind Crop Prod. 2015:1–10. https://doi.org/10.1016/j.indcrop.2015.01.079.

  50. Karjalainen M, Kostiainen R, Valo H, Peltonen L, Vehvila S, Laaksonen T, Hirvonen J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly (L -lactic acid) nanoparticles. Small. 2009;5:1791–8. https://doi.org/10.1002/smll.200801907.

    Article  CAS  PubMed  Google Scholar 

  51. Ankireddy SR, Kim J. Synthesis and characterization of quantum dot-loaded fibers by an electrospinning process. J Nanosci Nanotechnol. 2017;17:2720–3. https://doi.org/10.1166/jnn.2017.13357.

    Article  CAS  PubMed  Google Scholar 

  52. Soo J, Jae K, Huyen T, Hyun T, Min S, Lee Y. In vivo NIR imaging with CdTe / CdSe quantum dots entrapped in PLGA nanospheres. J Colloid Interface Sci. 2011;353:363–71. https://doi.org/10.1016/j.jcis.2010.08.053.

    Article  CAS  Google Scholar 

  53. Siepmann J, Siepmann F. Mathematical modeling of drug dissolution. Int J Pharm. 2013;453:12–24. https://doi.org/10.1016/j.ijpharm.2013.04.044.

    Article  CAS  PubMed  Google Scholar 

  54. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly (lactic-co-glycolic acid ) -based drug delivery systems — A review. Int J Pharm. 2011;415:34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.

    Article  CAS  PubMed  Google Scholar 

  55. Su Y, Hu M, Fan C, He Y, Li Q, Li W, Wang L, Shen P, Huang Q. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials. 2010;31:4829–34. https://doi.org/10.1016/j.biomaterials.2010.02.074.

    Article  CAS  PubMed  Google Scholar 

  56. Yao J, Li PF, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater. 2018;74:36–55. https://doi.org/10.1016/j.actbio.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  57. Xuan J, Lin Y, Huang J, Yuan F, Li X, Lu Y, Zhang H, Liu J, Sun Z, Zou H, Chen Y, Gao J, Zhong Y. Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats. Peptides. 2013;46:172–9. https://doi.org/10.1016/j.peptides.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  58. Li T. Luminescent / magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics. Int J Nanomedicine. 2017;12:4299–322. https://doi.org/10.2147/IJN.S136766.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng D, Wang J, Guo S, Zhao Z, Wang F. Formulations, pharmacodynamic and clinical studies of nanoparticles for lung cancer therapy - an overview. Current Drug Metabolism. 2018;19:759–67. https://doi.org/10.2174/1389200219666180305145345.

    Article  CAS  PubMed  Google Scholar 

  60. C. Feng, L. Zong, W. Fang, L. Ming, Pharmacodynamic study of Topotecan on NCI-H446 small cell lung cancer xenograft model in nude-mouse, (2013) 577–579. https://doi.org/10.13375/j.cnki.wcjps.2013.06.035.

  61. Ibrahim SS, Osman R, Mortada ND, Awad GAS, Ibrahim SS, Osman R, Mortada ND, Geneidy A, Awad GAS. Passive targeting and lung tolerability of enoxaparin microspheres for a sustained antithrombotic activity in rats. Drug Deliv. 2017;24:243–51. https://doi.org/10.1080/10717544.2016.1245368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Microspheres CP. Preparation and Characterization of Lung-targeting Cefquinome-loaded PLGA Microspheres. J Wuhan Univ Technol. 2017;32:494–9. https://doi.org/10.1007/s11595-017-1624-8.

    Article  CAS  Google Scholar 

  63. Yan M, Dongmei B, Jingjing Z, Xiaobao J, Jie W, Yan W, Jiayong Z. Antitumor activities of Liver- targeting peptide modified Recombinant human Endostatin in BALB / c-nu mice with Hepatocellular carcinoma. Sci. Rep. 2017:1–9. https://doi.org/10.1038/s41598-017-14320-0.

  64. Ozawa A, Sakaue M. Newdecolorization method produces more information from tissue sections stained with hematoxylin and eosin stain and Masson-trichrome stain[J].Annals of anatomy AnatomischerAnzeiger : official organ of the. Anatomische Gesellschaft. 2019:151431.

Download references

Funding

This work was supported by Wuyi University Scientific Research Project (No. 2017RC28), Jurong Science&Technology Program (No. YF202004), 2020 Haimen Dongzhou Talent Project, 2021 Zhenjiang sixth “169 project” scientific research project, 2021 Jurong Social Development Science&Technology Program (No. ZA42109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Liu or Changshan Sun.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zou, Y., Du, K. et al. Construction and Evaluation of Traceable rhES-QDs-M-MS Protein Delivery System: Sustained-Release Properties, Targeted Effect, and Antitumor Activity. AAPS PharmSciTech 23, 207 (2022). https://doi.org/10.1208/s12249-022-02326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02326-5

Key Words

Navigation