Skip to main content

Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®

Abstract

Gastroretentive drug delivery systems (GRDDS) get retained in the stomach for a long time, thus facilitating the absorption of drugs in the upper gastrointestinal tract. However, drugs that are difficult to dissolve or unstable in an acidic environment are not suitable for GRDDS. The current study designs GRDDS combined with a self-micro-emulsifying drug delivery system (SMEDDS) for drugs with solubility or stability problems in the stomach. The model drug fenofibrate was formulated into the optimized liquid SMEDDS composed of 50 w/w% Capryol® PGMC, 40 w/w% Kolliphor® RH40, and 10 w/w% Transcutol® HP and solidified through adsorption on several porous adsorbents. In a dissolution medium at pH 1.2, the powdered SMEDDS using Fujicalin® dissolved quickly and achieved higher drug dissolution than other adsorbents. Based on these results, a gastroretentive bilayer tablet consisting of a drug release layer and a swelling layer was designed. The drug release layer was formulated with the powdered SMEDDS and hydroxypropyl methylcellulose (HPMC) as a release modifier. HPMC was also added to the swelling layer as a water-swellable polymer. The dissolution rate depended on the viscosity of the HPMC in the drug release layer. The time for 90% drug release was extended from 3.7 to 12.0 h by increasing the viscosity grade of HPMC from 0.1 to 100 K. Moreover, the tablet swelled and maintained a size comparable to a human pylorus diameter or more for at least 24 h. This GRDDS could apply to a broader range of drug candidates.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510:144–58. https://doi.org/10.1016/j.ijpharm.2016.05.016.

    CAS  Article  PubMed  Google Scholar 

  2. Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: a potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics. 2021;13:1591. https://doi.org/10.3390/pharmaceutics13101591.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Rahamathulla M, Saisivam S, Gangadharappa HV. Development of valsartan floating matrix tablets using low density polypropylene foam powder: in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20:35. https://doi.org/10.1208/s12249-018-1265-z.

    CAS  Article  PubMed  Google Scholar 

  4. Vasvári G, Haimhoffer A, Horváth L, Budai I, Trencsényi G, Béresová M, et al. Development and characterization of gastroretentive solid dosage form based on melt foaming. AAPS PharmSciTech. 2019;20:290. https://doi.org/10.1208/s12249-019-1500-2.

    CAS  Article  PubMed  Google Scholar 

  5. Nguyen TT, Hwang KM, Kim SH, Park ES. Development of novel bilayer gastroretentive tablets based on hydrophobic polymers. Int J Pharm. 2020;574: 118865. https://doi.org/10.1016/j.ijpharm.2019.118865.

    CAS  Article  PubMed  Google Scholar 

  6. Dumpa NR, Bandari S, Repka MA. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020;12:52. https://doi.org/10.3390/pharmaceutics12010052.

    CAS  Article  Google Scholar 

  7. Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Design and optimization of 3D-printed gastroretentive floating devices by central composite design. AAPS PharmSciTech. 2021;22:197. https://doi.org/10.1208/s12249-021-02053-3.

    CAS  Article  PubMed  Google Scholar 

  8. Chen C, Cowles VE, Hou E. Pharmacokinetics of gabapentin in a novel gastric-retentive extended-release formulation: comparison with an immediate-release formulation and effect of dose escalation and food. J Clin Pharmacol. 2011;51(3):346–58. https://doi.org/10.1177/0091270010368411.

    CAS  Article  PubMed  Google Scholar 

  9. Sugihara H, Matsui Y, Takeuchi H, Wilding I, Connor A, Abe K, et al. Development of a gastric retentive system as a sustained-release formulation of pranlukast hydrate and its subsequent in vivo verification in human studies. Eur J Pharm Sci. 2014;53:62–8. https://doi.org/10.1016/j.ejps.2013.11.018.

    CAS  Article  PubMed  Google Scholar 

  10. Rimawi IB, Muqedi RH, Kanaze FI. Development of gabapentin expandable gastroretentive controlled drug delivery system. Sci Rep. 2019;9:11675. https://doi.org/10.1038/s41598-019-48260-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fahmy RH. Statistical approach for assessing the influence of calcium silicate and HPMC on the formulation of novel alfuzosin hydrochloride mucoadhesive-floating beads as gastroretentive drug delivery systems. AAPS PharmSciTech. 2012;13(3):990–1004. https://doi.org/10.1208/s12249-012-9823-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Khattab A, Zaki N. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using factorial design with improved bioavailability and mucosal integrity in ulcer model. AAPS PharmSciTech. 2017;18(4):957–73. https://doi.org/10.1208/s12249-017-0744-y.

    CAS  Article  PubMed  Google Scholar 

  13. Desai N, Purohit R. Development of novel high density gastroretentive multiparticulate pulsatile tablets of clopidogrel bisulfate using quality by design approach. AAPS PharmSciTech. 2017;18(8):3208–18. https://doi.org/10.1208/s12249-017-0805-2.

    CAS  Article  PubMed  Google Scholar 

  14. Freitas ELS, Pontes TRF, Neto RPA, Damasceno IHM, Silva KL, Carvalho JF, et al. Design of magnetic polymeric particles as a stimulus-responsive system for gastric antimicrobial therapy. AAPS PharmSciTech. 2017;18(6):2026–36. https://doi.org/10.1208/s12249-016-0673-1.

    CAS  Article  Google Scholar 

  15. Garad S. Understanding developability assessment of small molecules. In: Drug Delivery and Formulation Conference. 2019. https://www.ddfsummit.com/media/18802/sudhkar-garad.pdf. Accessed 7 Feb 2022.

  16. Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743–58. https://doi.org/10.1080/03639045.2017.1342654.

    CAS  Article  PubMed  Google Scholar 

  17. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv. 2015;22(6):675–90. https://doi.org/10.3109/10717544.2014.896058.

    CAS  Article  PubMed  Google Scholar 

  18. Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles. Int J Nanomed. 2007;2:595–607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676808/.

  19. Akula S, Gurram AK, Devireddy SR. Self-microemulsifying drug delivery systems: an attractive strategy for enhanced therapeutic profile. Int Sch Res Notices. 2014. https://doi.org/10.1155/2014/964051.

  20. Zhao T, Maniglio D, Chen J, Chen B, Migliaresi C. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs. Chem Phys Lipids. 2016;196:81–8. https://doi.org/10.1016/j.chemphyslip.2016.02.008.

    CAS  Article  PubMed  Google Scholar 

  21. Hintzen F, Perera G, Hauptstein S, Müller C, Laffleur F, Bernkop-Schnürch A. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int J Pharm. 2014;472:20–6. https://doi.org/10.1016/j.ijpharm.2014.05.047.

    CAS  Article  PubMed  Google Scholar 

  22. Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev. 2022;182: 114097. https://doi.org/10.1016/j.addr.2021.114097.

    CAS  Article  PubMed  Google Scholar 

  23. Almeida SRD, Tippavajhala VK. A rundown through various methods used in the formulation of solid self-emulsifying drug delivery systems (S-SEDDS). AAPS PharmSciTech. 2019;20:323. https://doi.org/10.1208/s12249-019-1550-5.

    Article  PubMed  Google Scholar 

  24. Maji I, Mahajan S, Sriram A, Medtiya P, Vasave R, Khatri DK, et al. Solid self emulsifying drug delivery system: superior mode for oral delivery of hydrophobic cargos. J Control Release. 2021;337:646–60. https://doi.org/10.1016/j.jconrel.2021.08.013.

    CAS  Article  PubMed  Google Scholar 

  25. Gumaste SG, Pawlak SA, Dalrymple DM, Nider CJ, Trombetta LD, Serajuddin ATM. Development of solid SEDDS, IV: effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm Res. 2013;30:3170–85. https://doi.org/10.1007/s11095-013-1114-4.

    CAS  Article  PubMed Central  Google Scholar 

  26. Gumaste SG, Dalrymple DM, Serajuddin ATM. Development of solid SEDDS, V: compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto Neusilin® US2. Pharm Res. 2013;30:3186–99. https://doi.org/10.1007/s11095-013-1106-4.

    CAS  Article  PubMed Central  Google Scholar 

  27. Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech. 2009;10(1):183–92. https://doi.org/10.1208/s12249-009-9192-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Alhasani KF, Kazi M, Ibrahim MA, Shahba AA, Alanazi FK. Self-nanoemulsifying ramipril tablets: a novel delivery system for the enhancement of drug dissolution and stability. Int J Nanomedicine. 2019;14:5435–48. https://doi.org/10.2147/IJN.S203311.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Patel PV, Patel HK, Panchal SS, Mehta TA. Self-micro-emulsifying drug delivery system of tacrolimus: formulation, in vitro evaluation and stability studies. Int J Pharm Investig. 2013;3(2):95–104. https://doi.org/10.4103/2230-973X.114899.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Shin DJ, Chae BR, Goo YT, Yoon HY, Kim CH, Sohn SI, et al. Improved dissolution and oral bioavailability of valsartan using a solidified supersaturable self-microemulsifying drug delivery system containing Gelucire® 44/14. Pharmaceutics. 2019;11:58. https://doi.org/10.3390/pharmaceutics11020058.

    CAS  Article  PubMed Central  Google Scholar 

  31. Kang MJ, Jung SY, Song WH, Park JS, Choi SU, Oh KT, et al. Immediate release of ibuprofen from Fujicalin®-based fast-dissolving self-emulsifying tablets. Drug Dev Ind Pharm. 2011;37(11):1298–305. https://doi.org/10.3109/03639045.2011.571695.

    CAS  Article  PubMed  Google Scholar 

  32. Tong Y, Wang Y, Yang M, Yang J, Chen L, Chu X, et al. Systematic development of self-nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1. Pharmaceutics. 2018;10:96. https://doi.org/10.3390/pharmaceutics10030096.

    CAS  Article  PubMed Central  Google Scholar 

  33. Seljak KB, Ilić IG, Gašperlin M, Pobirk AZ. Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. Int J Pharm. 2018;548(1):263–75. https://doi.org/10.1016/j.ijpharm.2018.06.065.

    CAS  Article  Google Scholar 

  34. Mohsin K, Long MA, Pouton CW. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: precipitation of drug after dispersion of formulations in aqueous solution. J Pharm Sci. 2009;98(10):3582–95. https://doi.org/10.1002/jps.21659.

    CAS  Article  PubMed  Google Scholar 

  35. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8.

    CAS  Google Scholar 

  36. Korsmeyer RW, Gurny R, Doelker E, Buli P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9.

    CAS  Article  Google Scholar 

  37. Jörgensen AM, Friedl JD, Wibel R, Chamieh J, Cottet H, Bernkop-Schnürch A. Cosolvents in self-emulsifying drug delivery systems (SEDDS): do they really solve our solubility problems? Mol Pharmaceutics. 2020;17:3236–45. https://doi.org/10.1021/acs.molpharmaceut.0c00343.

    CAS  Article  Google Scholar 

  38. Kohri N, Itagaki F, Kishino S, Iseki K, Miyazaki K. Comparison of calcium phosphate dibasic (Fujicalin S®) with microcrystalline cellulose (Avicel PH-F20®) as a direct-compression vehicle for the tablet of sodium phosphate. Jpn J Hosp Pharm. 1998;24(6):711–5.

    CAS  Article  Google Scholar 

  39. Gumaste SG, Serajuddin ATM. Development of solid SEDDS, VII: effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations. Eur J Pharm Sci. 2017;110:134–47. https://doi.org/10.1016/j.ejps.2017.05.014.

    CAS  Article  PubMed  Google Scholar 

  40. Timmermans J, Moës AJ. The cutoff size for gastric emptying of dosage forms. J Pharm Sci. 1993;82(8):854. https://doi.org/10.1002/jps.2600820821.

    CAS  Article  PubMed  Google Scholar 

  41. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod Manuf. 1984;5(3):1–9.

    CAS  Google Scholar 

  42. Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, et al. Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J Pharm Sci. 2009;98(2):516–28. https://doi.org/10.1002/jps.21451.

    CAS  Article  PubMed  Google Scholar 

  43. Suys EJA, Chalmers DK, Pouton CW, Porter CJH. Polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lipid-based formulation. Mol Pharmaceutics. 2018;15:2355–71. https://doi.org/10.1021/acs.molpharmaceut.8b00206.

    CAS  Article  Google Scholar 

  44. Broesder A, Berends JME, Scheepers SM, Nguyen DN, Frijlink HW, Hinrichs WLJ. Ileo-colon targeting of the poorly water-soluble drug celecoxib using a pH-dependent coating in combination with self-emulsifying drug delivery or solid dispersion systems. Pharmaceutics. 2021;13:731. https://doi.org/10.3390/pharmaceutics13050731.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Alothaid H, Aldughaim MS, Yusuf AO, Yezdani U, Alhazmi A, Habibullah MM, et al. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv. 2021;28(1):2119–26. https://doi.org/10.1080/10717544.2021.1986601.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Xi Z, Zhang W, Fei Y, Cui M, Xie L, Chen L, et al. Evaluation of the solid dispersion system engineered from mesoporous silica and polymers for the poorly water soluble drug indomethacin: in vitro and in vivo. Pharmaceutics. 2020;12:144. https://doi.org/10.3390/pharmaceutics12020144.

    CAS  Article  PubMed Central  Google Scholar 

  47. Nair AR, Lakshman YD, Anand VSK, Sree KSN, Bhat K, Dengale SJ. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21:309. https://doi.org/10.1208/s12249-020-01849-z.

    CAS  Article  PubMed  Google Scholar 

  48. Kumar R, Siril PF. Enhancing the solubility of fenofibrate by nanocrystal formulation and encapsulation. AAPS PharmSciTech. 2018;19(1):284–92. https://doi.org/10.1208/s12249-017-0840-z.

    CAS  Article  PubMed  Google Scholar 

  49. Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104:2747–76. https://doi.org/10.1002/jps.24365.

    CAS  Article  PubMed  Google Scholar 

  50. Vinarov Z, Abdallah M, Agundez JAG, Allegaert K, Basit AW, Braeckmans M, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: an UNGAP review. Eur J Pharm Sci. 2021;162: 105812. https://doi.org/10.1016/j.ejps.2021.105812.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Yoshihiro Omachi.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1571 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omachi, Y. Gastroretentive Sustained-Release Tablets Combined with a Solid Self-Micro-Emulsifying Drug Delivery System Adsorbed onto Fujicalin®. AAPS PharmSciTech 23, 157 (2022). https://doi.org/10.1208/s12249-022-02311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02311-y

KEY WORDS

  • Gastroretentive drug delivery system (GRDDS)
  • Sustained-release
  • Self-micro-emulsifying drug delivery system (SMEDDS)
  • Fujicalin®
  • Hydroxypropyl methylcellulose (HPMC)