Skip to main content

Advertisement

Log in

Preparation and Evaluation of Novel Supersaturated Solid Dispersion of Magnolol

Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This article aimed to design a new type of supersaturated solid dispersion (NS-SD) loaded with Magnolol (Mag) to raise the oral bioavailability in rats. In the light of the solubility parameters, phase solubility experiments, inhibition precipitation experiment, and in vitro release experiment, Plasdone-630 (PS-630) was selected as the optimum carrier. In addition, Mag-NS-SD was prepared by adding Monoglyceride (MG) and Lecithin High Potency (LHP) into the Mag-S-SD (Mag:PS-630 = 1:3), so as to reduce the dosage of carrier and improve the release rate. Using central composite design of response surface method, the prescription was further optimized. As the optimized condition was Mag:PS-630: MG: LHP = 1:3:0.8:0.266, the drug release rate was the fastest. Besides, after 45 min, the release rate was nearly 100%. The constructed Mag-S-SD and Mag-NS-SD were characterized by powder X-ray diffraction and infrared absorption spectrum. The XRD patterns of Mag-S-SD and Mag-NS-SD indicated that all APIs were amorphous. The IR spectra of Mag-S-SD and Mag-NS-SD demonstrated the existence of hydrogen bonding in the systems. Furthermore, in vivo pharmacokinetic study in rats revealed that compared with Mag and Mag-S-SD, Mag-NS-SD significantly increased the bioavailability (the relative bioavailability was 213.69% and 142.37%, separately). In this study, Mag-NS-SD was successfully prepared, which could improve the oral bioavailability and may increase the clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee BH, Choi SH, Kim HJ, Park SD, Rhim H, Kim HC, et al. Gintonin absorption in intestinal model systems. J Ginseng Res. 2018;42(1):35–41.

    Article  PubMed  Google Scholar 

  2. Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem. 2003;46(7):1250–6.

    Article  CAS  PubMed  Google Scholar 

  3. Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  4. Dhillon B, Goyal NK, Malviya R, Sharma PK. Poorly water soluble drugs: change in solubility for improved dissolution characteristics a review. Glob J Pharmacol. 2014;8(1):26–35.

    CAS  Google Scholar 

  5. Park H, Ha ES, Kim MS. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics. 2020;12(4):365.

    Article  CAS  PubMed Central  Google Scholar 

  6. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. Jsoccosmetchem. 1960;11:85–97.

    Google Scholar 

  7. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  8. Guzma H, Tawa M, Zhang Z, Ratanabanangkoon P, Remenar J. Spring and parachute approach to designing solid celecoxib formulations having enhanced oral absorption. AAPS J. 2004;6:21–9.

    Google Scholar 

  9. Xu S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  10. Gao P, Rush BD, Pfund WP. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386–98.

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2013;4(1):18–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Urbanetz NA, Lippold BC. Solid dispersions of nimodipine and polyethylene glycol 2000: dissolution properties and physico-chemical characterisation. Eur J Pharm Biopharm. 2005;59(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  13. Tsunashima D, Yamashita K, Ogawara KI, Sako K, Higaki K. Preparation of extended release solid dispersion formulations of tacrolimus using ethylcellulose and hydroxypropylmethylcellulose by solvent evaporation method. J Pharm Pharmacol. 2016;68(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  14. Pinto JMO, Leão AF, Riekes MK, França MT, Stulzer HK. HPMCAS as an effective precipitation inhibitor in amorphous solid dispersions of the poorly soluble drug candesartan cilexetil. Carbohydr Polym. 2017;2017:199–206.

    Google Scholar 

  15. Zhu C, Gong S, Ding J, Yu M, Ahmad E, Feng Y, et al. Supersaturated polymeric micelles for oral silybin delivery: the role of the Soluplus–PVPVA complex. Acta Pharm Sin B. 2019;9(01):107–17.

    Article  PubMed  Google Scholar 

  16. Xia D, Yu H, Tao J, Zeng J, Zhu Q, Zhu C, et al. Supersaturated polymeric micelles for oral cyclosporine A delivery: the role of Soluplus–sodium dodecyl sulfate complex. Colloids Surf B Biointerfaces. 2016;141:301–10.

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki H, Sunada H. Some factors influencing the dissolution of solid dispersions with nicotinamide and hydroxypropylmethylcellulose as combined carriers. Chem Pharm Bull. 1998;46(6):1015–20.

    Article  CAS  Google Scholar 

  18. Yongfei L. Preparation and dissolution of resveratrol S-SMEDDS. Technol Wind. 2019;36(36):135–7.

    Google Scholar 

  19. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Euro J Pharm Sci. 2000;11:93–8.

    Article  Google Scholar 

  20. Guilan Q, Boyi N, Vikramjeet S, Yixian Z, Chuan-Yu W, Xin P, et al. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomed. 2017;12:8801–11.

    Article  Google Scholar 

  21. Li P, Hynes SR, Haefele TF, Pudipeddi M, Royce AE, Serajuddin ATM. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug. J Pharm Sci. 2010;98(5):1750–64.

    Article  CAS  Google Scholar 

  22. Chavan RB, Modi SR, Bansal AK. Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. Int J Pharm. 2015;495(1):374–84.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal V, Siddiqui A, Ali H, Nazzal S. Dissolution and powder flow characterization of solid self-emulsified drug delivery system (SEDDS). Int J Pharm. 2008;366(1–2):44–52.

    PubMed  Google Scholar 

  24. Lin MH, Chen MC, Chen TH, Chang HY, Chou TC. Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation. Int Immunopharmacol. 2015;28(1):270–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lin CF, Hwang TL, Al-Suwayeh SA, Huang YL, Fang JY. Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharmaceut. 2013;445(1):153–62.

    Article  CAS  Google Scholar 

  26. Pacult J, Rams-Baron M, Chrzaszcz B, et al. Effect of polymer chain length on the physical stability of amorphous drug-polymer blends at ambient pressure. Mol Pharm. 2018;15(7):2807–15.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Lu M, Wu C. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion. Drug Deliv Transl Res. 2018;8(6):1670–8.

    Article  CAS  PubMed  Google Scholar 

  28. Xia D, Yu H, Tao J, Zeng J, Zhu Q, Zhu C, et al. Supersaturated polymeric micelles for oral cyclosporine A delivery: the role of Soluplus-sodium dodecyl sulfate complex. Colloids Surf B. 2016;141:301–10.

    Article  CAS  Google Scholar 

  29. Yu H, Xia D, Zhu Q, Zhu C, Chen D, Gan Y. Supersaturated polymeric micelles for oral cyclosporine A delivery. Eur J Pharm Biopharm. 2013;85(3):1325–36.

    Article  CAS  PubMed  Google Scholar 

  30. Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148(1):1–21.

    Article  CAS  Google Scholar 

  31. Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci. 2016;87:136–63.

    Article  CAS  PubMed  Google Scholar 

  32. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1–2):147–61.

    Article  CAS  PubMed  Google Scholar 

  33. Li PLX, Zhou H. Prediction method for the compatibility between drug and carrier. Chin J New Drugs. 2009;18(3):262–71.

    CAS  Google Scholar 

  34. Zhang HSL, Wang Y. Research progress on excipients of solid dispersion prepared by hot-melt extrusion technique. Drug Clinic. 2014;29(5):557–63.

    CAS  Google Scholar 

  35. Lu Y, Xu Z. Optimization of curcumin solid dispersion formulation and in vitro dissolution evaluation. Herb Depot. 2021;30(2):31–7.

    Google Scholar 

  36. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147–54.

    Article  CAS  Google Scholar 

  37. El-Banna HM, Daabis NA, Mortada LM, Abd-Elfattah S. Physicochemical study of drug binary systems. Part 3: tolbutamide-urea and tolbutamide-mannitol systems. Pharmazie. 1976;30(12):788–92.

    Google Scholar 

  38. Nakai Y, Yamamoto K, Oguchi T, et al. Determination of solubility parameters for solid medicinals and excipients. J Pharmacobio-dyn. 1989;12(2):20–3.

    Google Scholar 

  39. Rhodes CT. Drug development and industrial pharmacy. Drug Dev Commun. 1995;21(20):2263–85.

    Google Scholar 

  40. Bloch DW, Elegakey MA, Speiser PP. Solid dispersion of chlorthalidone in urea phase diagram and dissolution characteristics. Pharm Acta Helv. 1982;57(8):231–5.

    CAS  PubMed  Google Scholar 

  41. Li J, Jiang ZT. Preparation and bioavailability of magnolol solid dispersions. Chin Trad Herb Drugs. 2019;14(50):3337–44.

    Google Scholar 

  42. Bavishi DD, Borkhataria CH. Spring and parachute: how cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1–8.

    Article  CAS  Google Scholar 

  43. Zhu C, Gong S, Ding J, Yu M, Ahmad E, Feng Y, et al. Supersaturated polymeric micelles for oral silybin delivery: the role of the Soluplus-PVPVA complex. Acta Pharm Sin B. 2019;9(1):107–17.

    Article  PubMed  Google Scholar 

  44. Yamashita T, Ozaki S, Kushida I. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int J Pharm. 2011;419(1):170–4.

    Article  CAS  PubMed  Google Scholar 

  45. Ahn J-H, Kim Y-P, Lee Y-M, Seo E-M, Lee K-W, Kim H-S. Optimization of microencapsulation of seed oil by response surface methodology. Food Chem. 2008;107(1):98–105.

    Article  CAS  Google Scholar 

  46. Das SS, Singh A, Kar S, Ghosh R, Pal M, Fatima M, et al. Application of QbD framework for development of self-emulsifying drug delivery systems. In: Pharmaceutical Quality by Design. 2019. p. 297–350.

    Chapter  Google Scholar 

  47. Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett. 2014;9(1):2406.

    Article  PubMed  CAS  Google Scholar 

  48. Wang L, Huang T, Zeng J. Application progress of copolymer Soluplus® in new pharmaceutical formulations and technologies. Chin Pharm. 2016;27(19):2703–7.

    Google Scholar 

  49. Jiang WLY. Progress of applications of copovidone to pharmaceutical preparations. Chin J Pharm. 2015;46(8):898–903.

    CAS  Google Scholar 

  50. Ma F, Li X, Yin J, Ma L, Li D. Optimisation of double-enzymatic extraction of arabinoxylan from fresh corn fibre. J Food Sci Technol. 2020;57:1–11.

    Article  CAS  Google Scholar 

  51. Dilpreet S, Manisha S, K TA, Neena B. Evaluation of bio-mechanistic behavior of liquid self-microemulsifying drug delivery system in biorelevant media. Assay Drug Dev Technol. 2020;19:85–96.

    Google Scholar 

  52. Ujhelyi Z, Vecsernyés M, Fehér P, Kósa D, Arany P, Nemes D, et al. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol. 2018;27:81–6.

    Article  PubMed  Google Scholar 

  53. Zhong L, Li X, Liu L, Liao Y, Tang H, Xie L, et al. Research progress on application and curing of self-microemulsion in traditional Chinese medicine preparation. Pharm Clinic Chin Mater Med. 2019;10(2):53-8+64.

    Google Scholar 

  54. Gong L, Liao G, Chen Q, Luan H, Feng Y. Swollen surfactant micelles: properties and applications. Acta Phys Chim Sin. 2019;35(8):816–28.

    Article  CAS  Google Scholar 

  55. Chen P. Molecular interfacial phenomena of polymers and biopolymers. Mater Today. 2005;8(11):62–3.

    Article  Google Scholar 

  56. Ding T. Application of EXCEL in statistical test of bioequivalence. Chin Pharm. 2007;2007(01):93–4.

    Google Scholar 

  57. Han W, Jiang J. Overview of statistical evaluation methods for bioequivalence. Chin J Health Stat. 2010;27(04):441–5.

    Google Scholar 

  58. Sun W, Sun R. Two one side t-test for computational simplicity of bioavailability equivalence. Chin J Clin Pharmacol Ther. 1997;04:279–82.

    Google Scholar 

Download references

Acknowledgements

We are grateful that this work was supported by grants from 2020 Liaoning Provincial Department of Education Scientific Research Funding Project—Key Research Project (NO. 2020LZD02) and Open Fund of the State Key Laboratory of New Technology of Chinese Medicine Pharmaceutical Process (No. SKL2020Z0206).

Author information

Authors and Affiliations

Authors

Contributions

Jing Zhao: conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—review and editing, visualization, supervision, project administration; Pan Gao: conceptualization, methodology, formal analysis, investigation, resources, data curation, writing—original draft, visualization, supervision, project administration; Chengqiao Mu: conceptualization, formal analysis, investigation, data curation; Jingqi Ning: conceptualization, methodology, data acquisition, formal analysis; Wenbin Deng: conceptualization, methodology, formal analysis, data curation; Dongxu Ji: literature review, writing—original draft, data curation; Haowei Sun: writing—original draft, visualization, supervision; Xiangrong Zhang: conceptualization, methodology, formal analysis, writing—review and editing, project administration; Xinggang Yang: conceptualization, methodology, formal analysis, writing—review and editing, project administration, funding acquisition.

Corresponding authors

Correspondence to Xiangrong Zhang or Xinggang Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jing Zhao and Pan Gao have contributed equally to this work and share first authorship.

Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Gao, P., Mu, C. et al. Preparation and Evaluation of Novel Supersaturated Solid Dispersion of Magnolol. AAPS PharmSciTech 23, 97 (2022). https://doi.org/10.1208/s12249-022-02251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02251-7

KEY WORDS

Navigation