Skip to main content

Advertisement

Log in

PEGylated Lecithin-Chitosan Nanoparticle–Encapsulated Alphα-Terpineol for In Vitro Anticancer Effects

  • Research Article
  • Theme: Inhaled Drug Delivery of Biologics for Therapeutic and Vaccination
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to fabrication PEGylated lecithin-chitosan nanoparticles (PLC-NPs) as alphα-Terpineol’s (αT-PLC-NPs) delivery system and examine its anti-cancer effects. αT-PLC-NPs were synthesized by self-assembling method; after characterization, entrapment efficiency of α-T was measured by HPLC procedure. MTT test was conducted for cytotoxicity evaluation. Chick chorioallantoic membrane (CAM) and quantitative polymerase chain reaction (qPCR) analysis were used to determine the angiogenesis properties, and qPCR, flow cytometry, and acridine orange and propidium iodide (AO/PI) staining were used to evaluate the pro-apoptotic effects of αT-PLC-NPs. Finally, the anti-inflammatory and antibacterial activity of the αT-PLC-NPs was also evaluated. αT-PLC-NPs with a size of 220.8 nm, polydispersity index (PDI) of 0.3, zeta potential of +29.03 mV, and encapsulation efficiency of 82% showed higher inhibitory effect on MCF7 cells (IC50: 750 μg/mL) compared to HFF cells (above 1000 μg/mL). Decreased angiogenesis indices and embryonic growth factors in CAM assay, decreased expression of VEGF and VEGF-R genes, and decreased cell migration showed the inhibitory effect of αT-PLC-NPs on angiogenesis. Increased expression of P53, P21, and caspase9 genes, as well as the results of AO/PI staining along with increasing the number of SubG1 phase cells in flow cytometry, confirmed the pro-apoptotic effects of αT-PLC-NPs. Also, its anti-inflammatory effects were demonstrated by inhibiting the expression of pro-inflammatory cytokines (TNF-α and IL-6). The inhibitory power of αT-PLC-NPs in suppressing gram-positive and negative bacterial strains was demonstrated by disk diffusion (DD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. PLC-NPs are a promising carrier for α-T transfer for preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbasi N, Homayouni Tabrizi M, Ardalan T, Roumi S. Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Materials Technology. 2021:1–11.

  2. Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. Journal of Cancer. 2016;7(10):1281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA, Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ, Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M, Berman HK, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. Journal of Experimental Medicine. 2013;210(8):1529–44.

    Article  CAS  Google Scholar 

  4. Asadi-Samani M, Farkhad NK, Mahmoudian-Sani MR, Shirzad H. Antioxidants as a double-edged sword in the treatment of cancer. IntechOpen: Antioxidants; 2019.

    Book  Google Scholar 

  5. Soltani M, Etminan A, Rahmati A, Behjati Moghadam M, Ghaderi Segonbad G, Homayouni TM. Incorporation of Boswellia sacra essential oil into chitosan/TPP nanoparticles towards improved therapeutic efficiency. Materials Technology. 2021:1–13.

  6. Van Loenhout J, Peeters M, Bogaerts A, Smits E, Deben C. Oxidative stress-inducing anticancer therapies: taking a closer look at their immunomodulating effects. Antioxidants. 2020;9(12):1188.

    Article  PubMed Central  CAS  Google Scholar 

  7. Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798–811.

    Article  CAS  PubMed  Google Scholar 

  8. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. Journal of Clinical Medicine. 2020;9(1):84.

    Article  CAS  Google Scholar 

  9. Shabestarian H, Homayouni Tabrizi M, Movahedi M, Neamati A, Sharifnia F. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. Journal of Microencapsulation. 2021;38(5):324–37.

    Article  CAS  PubMed  Google Scholar 

  10. Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response. 2020;18(3):1559325820936161.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moon JH, Moxley JW Jr, Zhang P, Cui H. Nanoparticle approaches to combating drug resistance. Future Medicinal Chemistry. 2015;7(12):1503–10.

    Article  CAS  PubMed  Google Scholar 

  12. Hassan SB, Gali-Muhtasib H, Göransson H, Larsson R. Alpha terpineol: a potential anticancer agent which acts through suppressing NF-κB signalling. Anticancer Research. 2010;30(6):1911–9.

    CAS  PubMed  Google Scholar 

  13. Held S, Schieberle P, Somoza V. Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. Journal of Agricultural and Food Chemistry. 2007;55(20):8040–6.

    Article  CAS  PubMed  Google Scholar 

  14. Bicas J, Neri-Numa I, Ruiz A, De Carvalho J, Pastore G. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food and Chemical Toxicology. 2011;49(7):1610–5.

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Shi C, Yin Z, Jia R, Peng L, Kang S, Li Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian Journal of Microbiology. 2014;45(4):1409–13.

    Article  CAS  PubMed  Google Scholar 

  16. Kong Q, Zhang L, An P, Qi J, Yu X, Lu J, Ren X. Antifungal mechanisms of α-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes. Journal of applied microbiology. 2019;126(4):1161–74.

    Article  CAS  PubMed  Google Scholar 

  17. ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine. 2017;12:7291.

    Article  CAS  Google Scholar 

  18. Dong W, Ye J, Wang W, Yang Y, Wang H, Sun T, Gao L, Liu Y. Self-assembled lecithin/chitosan nanoparticles based on phospholipid complex: a feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. International Journal of Nanomedicine. 2020;15:5629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Hoogevest P. Review–an update on the use of oral phospholipid excipients. European Journal of Pharmaceutical Sciences. 2017;108:1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Drescher S, van Hoogevest P. The phospholipid research center: current research in phospholipids and their use in drug delivery. Pharmaceutics. 2020;12(12):1235.

    Article  CAS  PubMed Central  Google Scholar 

  21. Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, Shah H. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Delivery. 2019;26(1):765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13(10):1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. International Journal of Biological Macromolecules. 2015;72:1313–22.

    Article  CAS  PubMed  Google Scholar 

  24. Özcan İ, Azizoğlu E, Şenyiğit T, Özyazıcı M, Özer Ö. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. International Journal of Nanomedicine. 2013;8:461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ma Q, Gao Y, Sun W, Cao J, Liang Y, Han S, Wang X, Sun Y. Self-assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery. 2020;27(1):200–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, Choi HG, Yong CS, Kim JO. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharmaceutical Research. 2014;31(5):1302–14.

    Article  CAS  PubMed  Google Scholar 

  27. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kouchakzadeh H, Shojaosadati SA, Maghsoudi A, Farahani EV. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. Aaps Pharmscitech. 2010;11(3):1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marques SS, Ramos II, Fernandes SR, Barreiros L, Lima SA, Reis S, et al. Insights on ultrafiltration-based separation for the purification and quantification of methotrexate in nanocarriers. Molecules. 2020;25(8):1879.

    Article  CAS  PubMed Central  Google Scholar 

  30. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers. 2013;95(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  31. Valencia MS, da Silva Júnior MF, Xavier-Júnior FH, de Oliveira VB, de Albuquerque PBS, de Oliveira Borba EF, et al. Characterization of curcumin-loaded lecithin-chitosan bioactive nanoparticles. Carbohydrate Polymer Technologies and Applications. 2021;2:100119.

    Article  Google Scholar 

  32. Pumiputavon K, Chaowasku T, Saenjum C, Osathanunkul M, Wungsintaweekul B, Chawansuntati K, Wipasa J, Lithanatudom P. Cell cycle arrest and apoptosis induction by methanolic leaves extracts of four Annonaceae plants. BMC Complementary and Alternative Medicine. 2017;17(1):1–11.

    Article  CAS  Google Scholar 

  33. Mudunkotuwa IA, Al Minshid A, Grassian VH. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst. 2014;139(5):870–81.

    Article  CAS  PubMed  Google Scholar 

  34. Guo Q, Ai L, Cui SW. Fourier transform infrared spectroscopy (FTIR) for carbohydrate analysis. In: Methodology for Structural Analysis of Polysaccharides: Springer; 2018. p. 69–71.

    Chapter  Google Scholar 

  35. Perez-Ruiz AG, Ganem A, Olivares-Corichi IM, García-Sánchez JR. Lecithin–chitosan–TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Advances. 2018;8(61):34773–82.

    Article  CAS  Google Scholar 

  36. Vrandečić NS, Erceg M, Jakić M, Klarić I. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochimica Acta. 2010;498(1-2):71–80.

    Article  CAS  Google Scholar 

  37. Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR. PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 2020;21(7):1–15.

    Article  CAS  Google Scholar 

  38. Bose SK, Nirbhavane P, Batra M, Chhibber S, Harjai K. Nanolipoidal α-terpineol modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Nanomedicine. 2020;15(18):1743–60.

    Article  CAS  PubMed  Google Scholar 

  39. Altmeyer C, Karam TK, Khalil NM, Mainardes RM. Tamoxifen-loaded poly (L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Materials Science and Engineering: C. 2016;60:135–42.

    Article  CAS  Google Scholar 

  40. Alves ACS, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering: C. 2016;60:126–34.

    Article  CAS  Google Scholar 

  41. Martins LG, Mainardes RM. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly (lactic acid) nanoparticles. Journal of Pharmaceutical Analysis. 2017;7(6):388–93.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang L, Sheikh MS, Huang Y. Decision making by p53: life versus death. Molecular and Cellular Pharmacology. 2010;2(2):69–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. Journal of Cellular Biochemistry. 2004;91(2):398–409.

    Article  CAS  PubMed  Google Scholar 

  44. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer and Metastasis Reviews. 1995;14(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  45. Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials. 2021;11(5):1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ilk S, Saglam N, Özgen M. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(5):907–16.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Zhou C, Xia X, Liu Y. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. International Journal of Nanomedicine. 2016;11:761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naskar S, Kuotsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting. 2019;27(4):379–93.

    Article  CAS  PubMed  Google Scholar 

  49. Maiti R, Panigrahi S, Yin T, Huo M. Bovine serum albumin nanoparticles constructing procedures on anticancer activities. Int J Adv Res Biol Sci. 2018;5(4):226–39.

    CAS  Google Scholar 

  50. Şenyiğit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. Journal of Controlled Release. 2010;142(3):368–73.

    Article  PubMed  CAS  Google Scholar 

  51. Mariyam M, Ghosal K, Thomas S, Kalarikkal N, Latha MS. Dendrimers: general aspects, applications and structural exploitations as prodrug/drug-delivery vehicles in current medicine. Mini Reviews in Medicinal Chemistry. 2018;18(5):439–57.

    Article  CAS  PubMed  Google Scholar 

  52. Barbieri S, Sonvico F, Como C, Colombo G, Zani F, Buttini F, Bettini R, Rossi A, Colombo P. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake. Journal of Controlled Release. 2013;167(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  53. Hafner A, Dürrigl M, Pepić I, Filipović-Grčić J. Short-and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles. Chemical and Pharmaceutical Bulletin. 2011;59(9):1117–23.

    Article  CAS  PubMed  Google Scholar 

  54. Moreno E, Schwartz J, Larrea E, Conde I, Font M, Sanmartín C, Irache JM, Espuelas S. Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(8):2003–12.

    Article  CAS  Google Scholar 

  55. Pereira MC, Oliveira DA, Hill LE, Zambiazi RC, Borges CD, Vizzotto M, Mertens-Talcott S, Talcott S, Gomes CL. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry. 2018;240:396–404.

    Article  CAS  PubMed  Google Scholar 

  56. Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 2014;19(11):17773–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technology. 2014;7(4):1149–59.

    Article  CAS  Google Scholar 

  58. Alhajamee M, Marai K, Al Abbas SMN, Homayouni TM. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Materials Technology. 2021:1–12.

  59. Brunetti J, Carnicelli V, Ponzi A, Di Giulio A, Lizzi AR, Cristiano L, et al. Antibacterial and anti-inflammatory activity of an antimicrobial peptide synthesized with D amino acids. Antibiotics. 2020;9(12):840.

    Article  CAS  PubMed Central  Google Scholar 

  60. Pandya S. Nanoemulsion and their antimicrobial activity. Researchgate publications. 2015. https://doi.org/10.13140/RG.2.1.2274.6961.

  61. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.

    Article  PubMed  Google Scholar 

  62. Khaleel C, Tabanca N, Buchbauer G. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chemistry. 2018;16(1):349–61.

    Article  CAS  Google Scholar 

  63. Itani WS, El-Banna SH, Hassan SB, Larsson RL, Bazarbachi A, Gali-Muhtasib HU. Anti colon cancer components from lebanese sage (Salvia libanotica) essential oil: mechanistic basis. Cancer Biology & Therapy. 2008;7(11):1765–73.

    Article  CAS  Google Scholar 

  64. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences. 1998;95(8):4607–12.

    Article  CAS  Google Scholar 

  65. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation. 2001;41:189–207.

    Article  CAS  PubMed  Google Scholar 

  66. Ahmed NH, Said UZ, Meky NH, Mohamed MA. Role of chitosan nanoparticles as anti-angiogenic in mice bearing Ehrlich carcinoma. Oncol Res Rev. 2018;1:1–6.

    Article  CAS  Google Scholar 

  67. Dragostin O-M, Tatia R, Samal SK, Oancea A, Zamfir AS, Dragostin I, Lisă EL, Apetrei C, Zamfir CL. Designing of chitosan derivatives nanoparticles with antiangiogenic effect for cancer therapy. Nanomaterials. 2020;10(4):698.

    Article  CAS  PubMed Central  Google Scholar 

  68. Zhang L, Hu Y. Alphastatin-loaded chitosan nanoparticle preparation and its antiangiogenic effect on lung carcinoma. International Journal of Polymer Science. 2019;2019:1–9.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Islamic Azad University, Mashhad, Iran, and thus is appreciated by the author.

Funding

This research was performed at personal expense in the laboratory of Islamic Azad University of Mashhad.

Author information

Authors and Affiliations

Authors

Contributions

Masoud Homayouni Tabrizi conceived of the presented idea. Bahar Zarei, Masoud Homayouni Tabrizi, and Amir Rahmati performed the experiments and computations.

Corresponding author

Correspondence to Masoud Homayouni Tabrizi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, B., Tabrizi, M.H. & Rahmati, A. PEGylated Lecithin-Chitosan Nanoparticle–Encapsulated Alphα-Terpineol for In Vitro Anticancer Effects. AAPS PharmSciTech 23, 94 (2022). https://doi.org/10.1208/s12249-022-02245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02245-5

KEY WORDS

Navigation