Skip to main content

Advertisement

Log in

Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by l-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  3. Medeiros B, Allan AL. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives. Int J Mol Sci. 2019;20(9):2272.

    Article  CAS  PubMed Central  Google Scholar 

  4. Stein U, Schlag PM. Clinical, biological, and molecular aspects of metastasis in colorectal cancer. Target Ther Cancer. 2007;61-80.

  5. Kimbung S, Loman N, Hedenfalk I, editors. Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol. 2015; Elsevier.

  6. Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng L, Xu Y, Yin Q, Xu M, Zhong D, Yu H, Shen Q, Zhang P, Li Y. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics. 2016;6(3):435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iyengar P, Wardak Z, Gerber DE, Tumati V, Ahn C, Hughes RS, et al. Consolidative radiotherapy for limited metastatic non–small-cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2018;4(1):e173501-e.

    Article  Google Scholar 

  8. Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 2017;17(12):738–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  PubMed  Google Scholar 

  10. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.

    Article  CAS  PubMed  Google Scholar 

  12. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015;528(7582):413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485–503.

    Article  CAS  PubMed  Google Scholar 

  15. Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2021;22:1–15.

    Google Scholar 

  16. Swierczak A, Mouchemore KA, Hamilton JA, Anderson RL. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34(4):735–51.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: accomplices in metastasis. Cancer Lett. 2020;492:11–20.

    Article  CAS  PubMed  Google Scholar 

  18. Mollinedo F. Neutrophil degranulation, plasticity, and cancer metastasis. Trends Immunol. 2019;40(3):228–42.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Wang Q, Cheng Z. Research progress in mechanisms of tumor-associated neutrophils promoting tumor metastasis. Chin J Clin Oncol. 2019;524-7.

  20. Demkow U. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers. 2021;13(17):4495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen MB, Hajal C, Benjamin DC, Yu C, Azizgolshani H, Hynes RO, Kamm RD. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci. 2018;115(27):7022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J, Zervantonakis IK, Iannello A, Iwamoto Y, Cortez-Retamozo V, Kamm RD, Pittet MJ, Raulet DH, Weinberg RA. Neutrophils suppress intraluminal NK cell–mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 2016;6(6):630–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Powell DR, Huttenlocher A. Neutrophils in the tumor microenvironment. Trends Immunol. 2016;37(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  24. Liang W, Ferrara N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res. 2016;4(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  25. Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692–700.

    Article  CAS  PubMed  Google Scholar 

  26. Johnston S, Martin M, Di Leo A, Im S-A, Awada A, Forrester T, et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer. 2019;5(1):1–8.

    Article  CAS  Google Scholar 

  27. Schaer DA, Beckmann RP, Dempsey JA, Huber L, Forest A, Amaladas N, Li Y, Wang YC, Rasmussen ER, Chin D, Capen A, Carpenito C, Staschke KA, Chung LA, Litchfield LM, Merzoug FF, Gong X, Iversen PW, Buchanan S, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 2018;22(11):2978–94.

    Article  CAS  PubMed  Google Scholar 

  28. McCartney A, Moretti E, Sanna G, Pestrin M, Risi E, Malorni L, Biganzoli L, di Leo A. The role of abemaciclib in treatment of advanced breast cancer. Ther Adv Med Oncol. 2018;10:1758835918776925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, Wildiers H, Hudis CA, O'Shaughnessy J, Zamora E, Yardley DA, Frenzel M, Koustenis A, Baselga J. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6(12):e1386829.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mei K-C, Liao Y-P, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel AE. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano. 2020;14(10):13343–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. 2005;6(9):902–10.

    Article  CAS  PubMed  Google Scholar 

  33. Finger EB, Purl KD, Alon R, Lawrence MB, von Andrian UH, Springer TA. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996;379(6562):266–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hu L, Luo X, Zhou S, Zhu J, Xiao M, Li C, Zheng H, Qiu Q, Lai C, Liu X, Deng Y, Song Y. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis treatment. Pharm Res. 2019;36(7):97.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang T, She Z, Huang Z, Li J, Luo X, Deng Y. Application of sialic acid/polysialic acid in the drug delivery systems. Asian J Pharm Sci. 2014;9(2):75–81.

    Article  Google Scholar 

  36. Luo X, Liu M, Hu L, Qiu Q, Liu X, Li C, Lu M, Liu Y, Zhang T, Zhou S, McClements DJ, Jia X, Deng Y, Song Y. Targeted delivery of pixantrone to neutrophils by poly (sialic acid)-p-octadecylamine conjugate modified liposomes with improved antitumor activity. Int J Pharm. 2018;547(1-2):315–29.

    Article  CAS  PubMed  Google Scholar 

  37. Kou Y, Feng R, Chen J, Duan L, Wang S, Hu Y, Zhang N, Wang T, Deng Y, Song Y. Development of a nattokinase–polysialic acid complex for advanced tumor treatment. Eur J Pharm Sci. 2020;145:105241.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu Q, Li C, Yan X, Zhang H, Luo X, Gao X, Liu X, Song Y, Deng Y. Photodynamic/photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for potent tumor immunotherapy: more than one plus one? Biomaterials. 2021;269:120652.

    Article  CAS  PubMed  Google Scholar 

  39. Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, Brill A, Harmelin A. Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt. 2006;11(5):050507.

    Article  PubMed  Google Scholar 

  40. Chu D, Zhao Q, Yu J, Zhang F, Zhang H, Wang Z. Nanoparticle targeting of neutrophils for improved cancer immunotherapy. Adv Healthc Mater. 2016;5(9):1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. von Andrian UH, Chambers JD, Berg EL, Michie SA, Brown DA, Karolak D, et al. L-selectin mediates neutrophil rolling in inflamed venules through sialyl LewisX-dependent and-independent recognition pathways. 1993.

  42. Dzhagalov I, St. John A, He Y-W. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 2007;109(4):1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lang T, Dong X, Zheng Z, Liu Y, Wang G, Yin Q, Li Y. Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Sci Bull. 2019;64(2):91–100.

    Article  CAS  Google Scholar 

  44. Yin S, Cheryan VT, Xu L, Rishi AK, Reddy KB. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells. PloS one. 2017;12(8):e0183578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nair R, Roden D, Teo W, McFarland A, Junankar S, Ye S, et al. c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene. 2014;33(30):3992–4002.

    Article  CAS  PubMed  Google Scholar 

  46. Senbanjo LT, Chellaiah MA. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol. 2017;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li C, Qiu Q, Gao X, Yan X, Fan C, Luo X, Liu X, Wang S, Lai X, Song Y, Deng Y. Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy. J Control Release. 2021;337:393–406.

    Article  CAS  PubMed  Google Scholar 

  48. Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNF α and IFN γ: a comprehensive review. Cell Prolif. 2018;51(4):e12441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Engblom C, Pfirschke C, Zilionis R, Martins JDS, Bos SA, Courties G, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science. 2017;358(6367):eaal5081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Number 81973271).

Author information

Authors and Affiliations

Authors

Contributions

Chuizhong Fan: conceptualization, analysis, investigation, methodology, validation, and writing

Cong Li: conceptualization, analysis, and investigation

Shuang Lu: data curation, analysis, methodology, and validation

Xiaoxue Lai: analysis and methodology

Shuo Wang: analysis and methodology

Xinrong Liu: supervision

Yanzhi Song: supervision

Yihui Deng: supervision, resources, and review

Corresponding author

Correspondence to Yihui Deng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Li, C., Lu, S. et al. Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer. AAPS PharmSciTech 23, 109 (2022). https://doi.org/10.1208/s12249-022-02243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02243-7

KEY WORDS

Navigation