Skip to main content

Advertisement

Log in

Construction and Biological Evaluation of Multiple Modification Hollow Mesoporous Silicone Doxorubicin Nanodrug Delivery System

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Abstract. The combination of functionalized nanoparticles and chemotherapy drugs can effectively target tumor tissue, which can improve efficacy and reduce toxicity. In this article, pPeptide-PDA@HMONs-DOX nanoparticles (phosphopeptide-modified polydopamine encapsulates doxorubicin-loaded hollow mesoporous organosilica nanoparticles) were constructed that based on multiple modification hollow mesoporous organosilica nanoparticles (HMONs). The pPeptide-PDA@HMONs-DOX nanoparticles retain the biological functions of phosphorylated peptide while exhibiting biological safety that are suitable for effective drug delivery and stimulus responsive release. The degradation behaviors showed that pPeptide-PDA@HMONs-DOX has dual-responsive to drug release characteristics of pH and glutathione (GSH). In addition, the prepared pPeptide-PDA@HMONs-DOX nanoparticles have good biological safety, and their anti-tumor efficacy was significantly better than doxorubicin (DOX). This provided new research ideas for the construction of targeted nanodrug delivery systems based on mesoporous silicon.

Graphical Abstract

Scheme 1 The preparation of pPeptide-PDA@HMONs-DOX and the process of drug release under multiple responses. (A) Schematic diagram of the synthesis process of pPeptide-PDA@HMONs-DOX. (B) The process in which nanoparticles enter the cell and decompose and release DOX in response to pH and GSH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costa AR, Lanca de Oliveira M, Cruz I, Goncalves I, Cascalheira JF, Santos CRA. The sex bias of cancer. Trends in endocrinology and metabolism: TEM. 2020;31(10):785-799. https://doi.org/10.1016/j.tem.2020.07.002.

  2. Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017;12:5879–92. https://doi.org/10.2147/IJN.S123437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bradley JA, Mendenhall NP. Novel radiotherapy techniques for breast cancer. Annu Rev Med. 2018;69:277–88. https://doi.org/10.1146/annurev-med-042716-103422.

    Article  CAS  PubMed  Google Scholar 

  4. Lee VH, Yang L, Jiang Y, Kong FS. Radiation therapy for thoracic malignancies. Hematol Oncol Clin North Am. 2020;34(1):109–25. https://doi.org/10.1016/j.hoc.2019.09.007.

    Article  PubMed  Google Scholar 

  5. Li L, He S, Yu L, Elshazly EH, Wang H, Chen K, Zhang S, Ke L, Gong R. Codelivery of DOX and siRNA by folate-biotin-quaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells. Drug Deliv. 2019;26(1):499–508. https://doi.org/10.1080/10717544.2019.1606363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu B, Zhou F, Yan MM, Cai DS, Guo WB, Yang YQ, et al. PSMA-oriented target delivery of novel anticancer prodrugs: design, synthesis, and biological evaluations of oligopeptide-camptothecin conjugates. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103251.

  7. Janssen JM, Van Calsteren K, Dorlo TPC, Halaska MJ, Fruscio R, Ottevanger P, et al. Population pharmacokinetics of docetaxel, paclitaxel, doxorubicin and epirubicin in pregnant women with cancer: a study from the International Network of Cancer, Infertility and Pregnancy (INCIP). Clin Pharmacokinet. 2021;60(6):775–84. https://doi.org/10.1007/s40262-020-00961-4.

    Article  CAS  PubMed  Google Scholar 

  8. Nomura H, Aoki D, Michimae H, Mizuno M, Nakai H, Arai M, Sasagawa M, Ushijima K, Sugiyama T, Saito M, Tokunaga H, Matoda M, Nakanishi T, Watanabe Y, Takahashi F, Saito T, Yaegashi N, for the Japanese Gynecologic Oncology Group. Effect of taxane plus platinum regimens vs doxorubicin plus cisplatin as adjuvant chemotherapy for endometrial cancer at a high risk of progression: a randomized clinical trial. JAMA Oncol. 2019;5(6):833–40. https://doi.org/10.1001/jamaoncol.2019.0001.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J, Chen X, Wan S, Li L, Benner SA, Tan W. An aptamer-nanotrain assembled from six-letter DNA delivers doxorubicin selectively to liver cancer cells. Angew Chem. 2020;59(2):663–8. https://doi.org/10.1002/anie.201909691.

    Article  CAS  Google Scholar 

  10. Dees S, Ganesan R, Singh S, Grewal IS. Bispecific antibodies for triple negative breast cancer. Trends Cancer. 2021;7(2):162–73. https://doi.org/10.1016/j.trecan.2020.09.004.

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Qi D, Hsieh TC, Huang JH, Wu JM, Wu E. Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther. 2021;223:107800. https://doi.org/10.1016/j.pharmthera.2021.107800.

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Dong S, Wang Z, Feng L, Sun Q, Chen G, He F, Liu S, Li W, Yang P. Multimode imaging-guided photothermal/chemodynamic synergistic therapy nanoagent with a tumor microenvironment responded effect. ACS Appl Mater Interfaces. 2020;12(47):52479–91. https://doi.org/10.1021/acsami.0c17923.

    Article  CAS  PubMed  Google Scholar 

  13. Hassanen EI, Korany RMS, Bakeer AM. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J Biochem Mol Toxicol. 2021;35(5):e22722. https://doi.org/10.1002/jbt.22722.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang J, Shen N, Ci T, Tang Z, Gu Z, Li G, Chen X. Combretastatin A4 nanodrug-induced MMP9 amplification boosts tumor-selective release of doxorubicin prodrug. Adv Mater. 2019;31(44):e1904278. https://doi.org/10.1002/adma.201904278.

    Article  CAS  PubMed  Google Scholar 

  15. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioactive Mater. 2020;5(3):522–41. https://doi.org/10.1016/j.bioactmat.2020.04.003.

    Article  Google Scholar 

  16. Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale. 2017;9(4):1356–92. https://doi.org/10.1039/c6nr07315h.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang H, Wang Q, Li Z, Li F, Wu D, Fan M, Zheng A, Huang B, Gan L, Zhao Y, Yang X. Hydrophobicity-adaptive nanogels for programmed anticancer drug delivery. Nano Lett. 2018;18(12):7909–18. https://doi.org/10.1021/acs.nanolett.8b03828.

    Article  CAS  PubMed  Google Scholar 

  18. Yu R, Zou Y, Liu B, Guo Y, Wang X, Han M. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf B: Biointerfaces. 2019;177:1–10. https://doi.org/10.1016/j.colsurfb.2019.01.047.

    Article  CAS  PubMed  Google Scholar 

  19. Cutrim ESM, Vale AAM, Manzani D, Barud HS, Rodriguez-Castellon E, Santos A, et al. Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. Mater Sci Eng C Mater Biol Appl. 2021;120:111781. https://doi.org/10.1016/j.msec.2020.111781.

    Article  CAS  PubMed  Google Scholar 

  20. Liang L, Fu J, Qiu L. Design of pH-sensitive nanovesicles via cholesterol analogue incorporation for improving in vivo delivery of chemotherapeutics. ACS Appl Mater Interfaces. 2018;10(6):5213–26. https://doi.org/10.1021/acsami.7b16891.

    Article  CAS  PubMed  Google Scholar 

  21. Yan Y, Chen B, Wang Z, Yin Q, Wang Y, Wan F, Mo Y, Xu B, Zhang Q, Wang S, Wang Y. Sequential modulations of tumor vasculature and stromal barriers augment the active targeting efficacy of antibody-modified nanophotosensitizer in desmoplastic ovarian carcinoma. Adv Sci. 2021;8(3):2002253. https://doi.org/10.1002/advs.202002253.

    Article  CAS  Google Scholar 

  22. Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. Chem Med Chem. 2020;15(20):1940–6. https://doi.org/10.1002/cmdc.202000263.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Zhu T, Miao Y, Zhou L, Zhang W. Dual-responsive doxorubicin-loaded nanomicelles for enhanced cancer therapy. J Nanobiotechnol. 2020;18(1):136. https://doi.org/10.1186/s12951-020-00691-6.

    Article  CAS  Google Scholar 

  24. Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020;113:501–11. https://doi.org/10.1016/j.actbio.2020.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Li Q, Hou W, Zhang J, Yu C, Zeng D, Liu G, Li F. Enzyme-catalytic self-triggered release of drugs from a nanosystem for efficient delivery to nuclei of tumor cells. ACS Appl Mater Interfaces. 2019;11(46):43581–7. https://doi.org/10.1021/acsami.9b15460.

    Article  CAS  PubMed  Google Scholar 

  26. Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release. 2019;308:172–89. https://doi.org/10.1016/j.jconrel.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  27. Du B, Jia S, Wang Q, Ding X, Liu Y, Yao H, et al. A self-targeting, dual ROS/pH-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules. 2018;19(3):1026–36. https://doi.org/10.1021/acs.biomac.8b00012.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SH, Piao H, Cho YC, Kim SN, Choi G, Kim CR, Ji HB, Park CG, Lee C, Shin CI, Koh WG, Choy YB, Choy JH. Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc Natl Acad Sci U S A. 2019;116(24):11664–72. https://doi.org/10.1073/pnas.1906931116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park H, Saravanakumar G, Kim J, Lim J, Kim WJ. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv Healthc Mater. 2021;10(5):e2000834. https://doi.org/10.1002/adhm.202000834.

    Article  CAS  PubMed  Google Scholar 

  30. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Hakeem A, Hu J, Gan L, Santos HA, Yang X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019;10(1):3838. https://doi.org/10.1038/s41467-019-11718-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7). https://doi.org/10.3390/nano7070189.

  32. Cheng YJ, Qin SY, Ma YH, Chen XS, Zhang AQ, Zhang XZ. Super-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for effective combination cancer therapy. ACS Biomater Sci Eng. 2019;5(4):1878–86. https://doi.org/10.1021/acsbiomaterials.9b00099.

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Chen Y, Zhang X, Zhao Y. Fabrication of biodegradable auto-fluorescent organosilica nanoparticles with dendritic mesoporous structures for pH/redox-responsive drug release. Mater Sci Eng C Mater Biol Appl. 2020;112:110914. https://doi.org/10.1016/j.msec.2020.110914.

    Article  CAS  PubMed  Google Scholar 

  34. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030118.

  35. Wu J, Bremner DH, Niu S, Shi M, Wang H, Tang R, Zhu LM. Chemodrug-gated biodegradable hollow mesoporous organosilica nanotheranostics for multimodal imaging-guided low-temperature photothermal therapy/chemotherapy of cancer. ACS Appl Mater Interfaces. 2018;10(49):42115–26. https://doi.org/10.1021/acsami.8b16448.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Shi J. Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv Mater. 2016;28(17):3235–72. https://doi.org/10.1002/adma.201505147.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. Nano Today. 2021;38:101146. https://doi.org/10.1016/j.nantod.2021.101146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen ZX, Liu MD, Guo DK, Zou MZ, Wang SB, Cheng H, Zhong Z, Zhang XZ. A MSN-based tumor-targeted nanoplatform to interfere with lactate metabolism to induce tumor cell acidosis for tumor suppression and anti-metastasis. Nanoscale. 2020;12(5):2966–72. https://doi.org/10.1039/c9nr10344a.

    Article  CAS  PubMed  Google Scholar 

  39. Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han YK, et al. Folate-conjugated nanovehicles: strategies for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;107:110341. https://doi.org/10.1016/j.msec.2019.110341.

    Article  CAS  PubMed  Google Scholar 

  40. Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo targeting of liver cancer with tissue- and nuclei-specific mesoporous silica nanoparticle-based nanocarriers in mice. Int J Nanomedicine. 2020;15:8383–400. https://doi.org/10.2147/IJN.S272495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li F, Liu Q, Liang Z, Wang J, Pang M, Huang W, Wu W, Hong Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Org Biomol Chem. 2016;14(13):3409–22. https://doi.org/10.1039/c6ob00122j.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 2017;9(22):18462–73. https://doi.org/10.1021/acsami.7b02457.

    Article  CAS  PubMed  Google Scholar 

  43. Chen L, Zhang J, Zhou X, Yang S, Zhang Q, Wang W, You Z, Peng C, He C. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomater. 2019;86:406–15. https://doi.org/10.1016/j.actbio.2019.01.005.

    Article  CAS  PubMed  Google Scholar 

  44. de Carcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, et al. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun. 2018;9(1):3012. https://doi.org/10.1038/s41467-018-05429-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Li Z, Liu Y, Lin T, Sun H, Yang D, Jiang C. Identification of novel and selective non-peptide inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg Chem. 2018;81:278–88. https://doi.org/10.1016/j.bioorg.2018.08.030.

    Article  CAS  PubMed  Google Scholar 

  46. Lin TY, Min HP, Jiang C, Niu MM, Yan F, Xu LL, di B. Design, synthesis and biological evaluation of phosphopeptides as Polo-like kinase 1 Polo-box domain inhibitors. Bioorg Med Chem. 2018;26(12):3429–37. https://doi.org/10.1016/j.bmc.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  47. Huang P, Chen Y, Lin H, Yu L, Zhang L, Wang L, Zhu Y, Shi J. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials. 2017;125:23–37. https://doi.org/10.1016/j.biomaterials.2017.02.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (81773988) and the Chinese Medical Association Clinical Pharmacy Branch-Wu Jieping Medical Foundation Research Fund (No.LCYX-Q010).

Author information

Authors and Affiliations

Authors

Contributions

Mengru Hu: writing—original draft, software, methodology, validation. Wenjing Zhang: software, date curation, validation, visualization. Weidong Chen: formal analysis, conceptualization. Yunna Chen: formal analysis, software, validation. Qianqian Huang: formal analysis, software, validation. Qingqian Bao: formal analysis, Software, validation. Tongyuan Lin: supervision, resources, funding acquisition. Lei Wang: supervision, resources, conceptualization, funding acquisition. Shantang Zhang: supervision, conceptualization.

Corresponding authors

Correspondence to Lei Wang or Shantang Zhang.

Ethics declarations

Ethics Approval

All animal experiments involved in the manuscript were approved by the Ethics Committee of Anhui University of Chinese Medicine (AHUCM-mouse-2021053).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Zhang, W., Chen, W. et al. Construction and Biological Evaluation of Multiple Modification Hollow Mesoporous Silicone Doxorubicin Nanodrug Delivery System. AAPS PharmSciTech 23, 180 (2022). https://doi.org/10.1208/s12249-022-02226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02226-8

KEY WORDS

Navigation