Skip to main content

Advertisement

Log in

Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm. Elsevier B.V. 2017;530(12):1–11.

    Article  CAS  Google Scholar 

  2. Abhaihaidelmonem R, Nabarawi ME, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv. 2018;25(1):70–7. Informa Healthcare USA, Inc. Available from. https://doi.org/10.1080/10717544.2017.1413447.

    Article  CAS  Google Scholar 

  3. Abidin L, Mujeeb M, Imam SS, Aqil M, Khurana D. Enhanced transdermal delivery of luteolin via non-ionic surfactant-based vesicle: quality evaluation and anti-arthritic assessment. Drug Deliv. 2016;23(3):1079–84.

    Article  Google Scholar 

  4. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6. King Saud University; Available from. https://doi.org/10.1016/j.jsps.2017.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured lipid carriers (NLCs): nose-to-brain delivery and theranostic application. Curr Drug Metab. 2020;21(14):1136–43.

    Article  CAS  Google Scholar 

  6. Ahmed S, Sarim Imam S, Zafar A, Ali A, Aqil M, Gull A. In vitro and preclinical assessment of factorial design based nanoethosomes transgel formulation of an opioid analgesic. Artif. Cells, Nanomed Biotechnol. 2016;44(8):1793–802.

    CAS  Google Scholar 

  7. Ahmed S, Gull A, Aqil M, Danish Ansari M, Sultana Y. Poloxamer-407 thickened lipid colloidal system of agomelatine for brain targeting: characterization, brain pharmacokinetic study and behavioral study on Wistar rats. Colloids Surf B: Biointerfaces. 2019;181:426–36. Elsevier B.V.; Available from. https://doi.org/10.1016/j.colsurfb.2019.05.016.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed S, Mahmood S, Danish M, Gull A, Sharma N. Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain formula optimization , characterization and brain distribution study. Int J Pharm. 2021;607(June):121006. https://doi.org/10.1016/j.ijpharm.2021.121006 Elsevier B.V.; Available from.

    Article  CAS  PubMed  Google Scholar 

  9. Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical nano-vesicular spanlastics of celecoxib: enhanced anti-inflammatory effect and down-regulation of tnf-α, nf-кb and cox-2 in complete Freund’s adjuvant-induced arthritis model in rats. Int J Nanomedicine. 2021;16:133–45.

    Article  Google Scholar 

  10. Alhakamy NA, et al. Pharmaceutics development and optimization of luliconazole spanlastics to augment the antifungal activity against Candida albicans Academic Editors: Maria José. 2021. https://doi.org/10.3390/pharmaceutics13070977.

  11. Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017;522(1–2):157–64. https://doi.org/10.1016/j.ijpharm.2017.03.005 Elsevier B.V.; Available from.

    Article  CAS  PubMed  Google Scholar 

  12. Ansari MD, Ahmed S, Imam SS, Khan I, Singhal S, Sharma M, et al. CCD based development and characterization of nano-transethosome to augment the antidepressant effect of agomelatine on Swiss albino mice. J Drug Deliv Sci Technol. Elsevier. 2019;54(June):101234. https://doi.org/10.1016/j.jddst.2019.101234.

    Article  CAS  Google Scholar 

  13. Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-β-boswellic acid): Statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Devel Ther. 2020;14:3697–721.

    Article  CAS  Google Scholar 

  14. Bergh JCJM, Van den Verbruggen H. 1-s2.0-S0921800999000324-main. Spat Sustain Trade Indic:an Eval. ‘ecological footprint.’. 1999;29:61–72.

    Google Scholar 

  15. Bharatha S Melphalan spanlastics for oral administration. 2016;5(12):430–40.

  16. Chauhan MK, Khanna G. Recent advance of nanotechnology for the treatment of ocular disease. Khanna al. World J Pharm Res. 2018;7(15):239 Available from: www.wjpr.net.

    Google Scholar 

  17. Datta N, Pal M, Roy U, Mitra R, Pradhan A. World Journal of Pharmaceutical Research. Infection. 2014;13(12):15.

  18. Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev. 2018;127:58–84. Elsevier B.V; Available from:. https://doi.org/10.1016/j.addr.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  19. El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. 2019;26(1):1140–54. https://doi.org/10.1080/10717544.2019.1686087 Taylor & Francis; Available from.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Meshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23(7):2115–23. Informa Healthcare USA, Inc; Available from. https://doi.org/10.3109/10717544.2014.942811.

    Article  CAS  Google Scholar 

  21. Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;568(April):118556. Elsevier; Available from. https://doi.org/10.1016/j.ijpharm.2019.118556.

    Article  CAS  PubMed  Google Scholar 

  22. Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Effect of pegylated edge activator on span 60 based- nanovesicles: comparison between Myrj 52 and Myrj 59. Univers. J. Pharm. Res. 2019;1–8.

  23. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1–2):60–6.

    Article  CAS  Google Scholar 

  24. Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18(2):551–62. https://doi.org/10.1208/s12249-016-0528-9.

    Article  CAS  PubMed  Google Scholar 

  25. Fahmy AM, et al. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Delivery. 2018;25(1):12–22. https://doi.org/10.1080/10717544.2017.1410262.

    Article  CAS  PubMed  Google Scholar 

  26. Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. particle size. AAPS Pharm Sci Tech. 2019;20(3):1–13.

    Article  Google Scholar 

  27. Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24(3):204–15.

    Article  CAS  Google Scholar 

  28. Glujoy M, Salerno C, Bregni C, Carlucci AM. Percutaneous drug delivery systems for improving antifungal therapy effectiveness: a review. Int J Pharm Pharm Sci. 2014;6(6):8–16.

    CAS  Google Scholar 

  29. Imam SS, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv. 2015;22(8):1059–70.

    Article  CAS  Google Scholar 

  30. Jia HR, Zhu YX, Liu X, Pan GY, Gao G, Sun W, Zhang X, Jiang YW, Wu FG. Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs. ACS Nano. 2019;13(10):11781–92.

    Article  CAS  Google Scholar 

  31. Kakkar S, Kaur IP. Spanlastics-a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011a;413(1–2):202–10. Elsevier B.V.; Available from. https://doi.org/10.1016/j.ijpharm.2011.04.027.

    Article  CAS  PubMed  Google Scholar 

  32. Kaur IP, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther. 2012;28(5):484–96.

    Article  CAS  Google Scholar 

  33. Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol. 2019;54(September):101303. Elsevier; Available from. https://doi.org/10.1016/j.jddst.2019.101303.

    Article  CAS  Google Scholar 

  34. Khuroo T, Verma D, Talegaonkar S, Padhi S, Panda AK, Iqbal Z. Topotecan-tamoxifen duple PLGA polymeric nanoparticles: investigation of in vitro, in vivo and cellular uptake potential. Int J Pharm. 2014;473(1–2):384–94. Elsevier B.V.; Available from. https://doi.org/10.1016/j.ijpharm.2014.07.022.

    Article  CAS  PubMed  Google Scholar 

  35. Khuroo T, Verma D, Khuroo A, Ali A, Iqbal Z. Simultaneous delivery of paclitaxel and erlotinib from dual drug loaded PLGA nanoparticles: formulation development, thorough optimization and in vitro release. J. Mol. Liq. 2018;257:52–68. Elsevier B.V.; Available from. https://doi.org/10.1016/j.molliq.2018.02.091.

    Article  CAS  Google Scholar 

  36. Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:1–9.

    Article  Google Scholar 

  37. Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, et al. Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release. Elsevier B.V. 2017;268:19–39.

    Article  CAS  Google Scholar 

  38. Liu Y, et al. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production. Int J Pharm. 2019;565:133–42.https://doi.org/10.1016/j.ijpharm.2019.05.018.

  39. Madkhali OA, et al. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-89330-0.

    Article  CAS  Google Scholar 

  40. Mahajan AN, Surti N, Patel P, Patel A, Shah D, Patel V. Melt dispersion adsorbed onto porous carriers: an effective method to enhance the dissolution and flow properties of raloxifene hydrochloride. Assay Drug Dev Technol. 2020;18(6):282–94.

    Article  CAS  Google Scholar 

  41. Mahtab A, Rizwanullah M, Pandey S, Leekha A, Rabbani SA, Verma AK, et al. Quality by design driven development and optimization of teriflunomide loaded nanoliposomes for treatment of rheumatoid arthritis: an in vitro and in vivo assessments. J Drug Deliv Sci Technol. 2019;51(October 2018):383–96. Elsevier; Available from. https://doi.org/10.1016/j.jddst.2019.03.008.

    Article  CAS  Google Scholar 

  42. Maiti B, Kakkar S, Kaur IP, Basha M, Abd El-Alim SH, et al. Preparation of an anti-inflammatory agent in different dosage forms for topical application a thesis presented By. Int J Pharm. 2019;18(1):70–7. Elsevier B.V.; Available from. https://doi.org/10.1016/j.ijpharm.2015.02.012.

    Article  CAS  Google Scholar 

  43. Menon S, Verma D, Khuroo T, Talegaonkar S, Iqbal Z. Extraction of a water soluble bioactive hypoxoside and its development into an ethosomal system for deep dermal delivery. Int J Pharm Pharm Sci. 2015;7(11):211–5.

    CAS  Google Scholar 

  44. Mirza MA, Ahmad S, Mallick MN, Manzoor N, Talegaonkar S, Iqbal Z. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: an in vitro, in vivo evaluation. Colloids Surf B: Biointerfaces. 2013;103:275–82. https://doi.org/10.1016/j.colsurfb.2012.10.038 Elsevier B.V.; Available from.

    Article  CAS  PubMed  Google Scholar 

  45. Mohamed EM, Khuroo T, Afrooz H, Dharani S, Sediri K, Cook P, Arunagiri R, Khan MA, Rahman Z. Development of a multivariate predictive dissolution model for tablets coated with cellulose ester blends. Pharmaceuticals. 2020;13(10):1–15.

    Article  Google Scholar 

  46. Mohanta P, Pandey NK, Kapoor DN, Singh SK, Sarvi Y, Sharma P. Development of surfactant-based nanocarrier system for delivery of an antifungal drug. J Pharm Res. 2017;11(9):1153.

    CAS  Google Scholar 

  47. Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24(2):163–9.

    Article  CAS  Google Scholar 

  48. Rajan R, Vasudevan D, Biju Mukund V, Jose S. Transferosomes - a vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138–43.

    Article  CAS  Google Scholar 

  49. Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2021. Springer US; Available from. https://doi.org/10.1007/s13346-021-00909-6.

  50. Rizwanullah ZS, Rizwanullah M, Mir SR, Amin S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: a complete characterization through in vitro, ex-vivo and in vivo assessment. J Drug Deliv Sci Technol. 2020;57(February):101634. Elsevier; Available from. https://doi.org/10.1016/j.jddst.2020.101634.

    Article  CAS  Google Scholar 

  51. Saleh A, Khalifa M, Shawky S, Bani-Ali A, Eassa H, Donaldson A. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; formulation parameters optimized via quality by design approach. Sci Pharm. 2021; Available from. https://doi.org/10.3390/scipharm89020024.

  52. Sallam NM, Sanad RAB, Ahmed MM, Khafagy ES, Ghorab M, Gad S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv. Transl. Res. Drug Delivery and Transl Res 2020

  53. Shahab MS, Rizwanullah M, Alshehri S, Imam SS. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int J Biol Macromol. 2020;163:2392–404. Elsevier B.V.; Available from. https://doi.org/10.1016/j.ijbiomac.2020.09.185.

    Article  CAS  PubMed  Google Scholar 

  54. Sipahigil O, Dortunç B. Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int J Pharm. 2001;228(1–2):119–28.

    Article  CAS  Google Scholar 

  55. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm. 2015;483(1–2):77–88. Elsevier B.V.; Available from. https://doi.org/10.1016/j.ijpharm.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  56. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  Google Scholar 

  57. Verma D, Mirza MA, Taleuzzaman M, Khuroo T, Talegaonkar S, Kumar R, et al. Development and validation of reversed phase HPLC method for the simultaneous detection of lactone and carboxylate forms of topotecan along with thymoquinone: application to nanoparticulate anticancer formulation system. J Anal Chem. 2020;75(4):503–9.

    Article  Google Scholar 

  58. Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, et al. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J Drug Deliv Sci Technol. 2019a;52(March):468–76. Elsevier; Available from. https://doi.org/10.1016/j.jddst.2019.05.019.

    Article  CAS  Google Scholar 

  59. Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, Ali A. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J Drug Deliv Sci Technol Elsevier. 2019b;52(May):468–76.

    Article  CAS  Google Scholar 

  60. Woldu MA, Lenjissa JL, Satessa GD. Design and evaluation of nanoparticulate drug delivery systems for imaging and treatment of malignant brain tumor. 2014;14(1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Sultana.

Ethics declarations

Ethics approval

The review article does not involve any animal or human study therefore no ethical approval is needed from the institute.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.D., Saifi, Z., Pandit, J. et al. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 23, 112 (2022). https://doi.org/10.1208/s12249-022-02217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02217-9

KEY WORDS

Navigation