Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Bimatoprost-Loaded Silica Shell–Coated Nanoparticles-Laden Soft Contact Lenses to Manage Glaucoma: In Vitro and In Vivo Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

This article was retracted on 31 May 2022

This article has been updated

Abstract

Currently, glaucoma is managed by frequent instillation of bimatoprost eye drop therapy, which showed very poor ocular bioavailability. Contact lens is widely used as medical device to improve the drug retention on the ocular tissues. However, the traditional methods of drug loading in the contact lens matrix showed high burst release and changes the optophysical properties of the contact lens material. In this paper, a novel bimatoprost-loaded silica shell nanoparticles-laden soft contact lenses were developed to achieve sustain drug delivery without altering the optophysical properties of the contact lens. Silica-shell nanoparticles were prepared using octyltrimethoxysilane (OTMS) and microemulsion. Traditional soaking method (SM-BT), direct bimatoprost loading method (DL-BT), and microemulsion-laden contact lens (ME-BT) were developed for comparison. The silica shell-coated nanoparticles-laden soft contact lenses (SiS-BT) showed improved swelling, transmittance, oxygen permeability, and lysozyme adherence compared to SM-BT, DL-BT, and ME-BT lenses. The DL-BT and ME-BT batch showed high bimatoprost lost/leaching during extraction and sterilization steps, with low cumulative drug release. Also, SiS-BT lens showed sustain bimatoprost release for 96 h. In a rabbit tear fluid model, the SiS-BT lens showed high bimatoprost concentration for 72 h compared to ME-BT lens and eye drop therapy. Based on histopathological studies of cornea, the SiS-BT lens was found to be safe for human applications. The data demonstrated the novel application of silica shell nanoparticles to deliver bimatoprost from the contact lens for extended period of time without altering the optophysical properties of the contact lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data are available on request from the corresponding author.

Change history

References

  1. Susanna R, De Moraes CG, Cioffi GA, Ritch R. Why do people (still) go blind from glaucoma? Transl Vision Sci Technol. 2015;4(2):1–10.

    Article  Google Scholar 

  2. Pan Y, Varma R. Natural history of glaucoma. Indian J Ophthalmol. 2011;59(Suppl1):S19.

    PubMed  PubMed Central  Google Scholar 

  3. van der Valk R, Webers CA, Schouten JS, Zeegers MP, Hendrikse F, Prins MH. Intraocular pressure–lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology. 2005;112(7):1177–85.

    Article  Google Scholar 

  4. Brasnu E, Brignole-Baudouin F, Riancho L, Guenoun J-M, Warnet J-M, Baudouin C. In vitro effects of preservative-free tafluprost and preserved latanoprost, travoprost, and bimatoprost in a conjunctival epithelial cell line. Curr Eye Res. 2008;33(4):303–12.

    Article  CAS  Google Scholar 

  5. Maulvi FA, Desai DT, Shetty KH, Shah DO, Willcox MD. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm. 2021;608:121090.

    Article  CAS  Google Scholar 

  6. Desai A, Shukla M, Maulvi F, Ranch K. Ophthalmic and otic drug administration: novel approaches and challenges. In: Misra A, Shahiwala A, editors. Novel drug delivery technologies. Singapore: Springer; 2019. pp. 335–81.

  7. Goldberg I, Pina RG, Lanzagorta-Aresti A, Schiffman RM, Liu C, Bejanian M. Bimatoprost 0.03%/timolol 0.5% preservative-free ophthalmic solution versus bimatoprost 0.03%/timolol 0.5% ophthalmic solution (Ganfort) for glaucoma or ocular hypertension: A 12-week randomised controlled trial. Br J Ophthalmol. 2014;98(7):926–31.

    Article  Google Scholar 

  8. Harasymowycz P, Hutnik C, Rouland J-F, Negrete FJM, Economou MA, Denis P, Baudouin C. Preserved versus preservative-free latanoprost for the treatment of glaucoma and ocular hypertension: a post hoc pooled analysis. Adv Ther. 2021:1–13.

  9. Stringham J, Ashkenazy N, Galor A, Wellik SR. Barriers to glaucoma medication compliance among veterans: Dry eye symptoms and anxiety disorders. Eye & Contact Lens. 2018;44(1):50–60.

    Article  Google Scholar 

  10. Choi SW, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: A review. Mater Sci Eng C. 2018;11(7):1125.

    Google Scholar 

  11. Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017–26.

    Article  CAS  Google Scholar 

  12. Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89(8):1140–9.

    Article  Google Scholar 

  13. Torres-Luna C, Hu N, Tammareddy T, Domszy R, Yang J, Wang NS, Yang A. Extended delivery of non-steroidal anti-inflammatory drugs through contact lenses loaded with Vitamin E and cationic surfactants. Contact Lens Anterior Eye. 2019;42(5):546–52.

    Article  Google Scholar 

  14. Zhu Y, Sheng Y. Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens. Int J Pharm. 2020;587:119688.

    Article  CAS  Google Scholar 

  15. Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C. Hydrophilic acrylic hydrogels with built-in or pendant cyclodextrins for delivery of anti-glaucoma drugs. Carbohydr Polym. 2012;88(3):977–85.

    Article  CAS  Google Scholar 

  16. Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J Control Release. 2020;326:544–55.

    Article  CAS  Google Scholar 

  17. Meka AK, Jenkins LJ, Dàvalos-Salas M, Pujara N, Wong KY, Kumeria T, Mariadason JM, Popat A. Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles. Pharmaceutics. 2018;10(4):283–90.

    Article  CAS  Google Scholar 

  18. Abbaraju PL, Meka AK, Jambhrunkar S, Zhang J, Xu C, Popat A, Yu C. Floating tablets from mesoporous silica nanoparticles. J Mater Chem B. 2014;2(47):8298–302.

    Article  CAS  Google Scholar 

  19. Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP. Rationally designed dendritic silica nanoparticles for oral delivery of exenatide. Pharmaceutics. 2019;11(8):418.

    Article  CAS  Google Scholar 

  20. Yan F, Liu Y, Han S, Zhao Q, Liu N. Bimatoprost imprinted silicone contact lens to treat glaucoma. AAPS PharmSciTech. 2020;21(2):1–8.

    Article  Google Scholar 

  21. Karlgard C, Wong N, Jones L, Moresoli C. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. Int J Pharm. 2003;257(1-2):141–51.

    Article  CAS  Google Scholar 

  22. Sekar P, Chauhan A. Effect of vitamin-E integration on delivery of prostaglandin analogs from therapeutic lenses. J Colloid Interface Sci. 2019;539:457–67.

    Article  CAS  Google Scholar 

  23. Koli AR, Ranch KM, Patel HP, Parikh RK, Shah DO, Maulvi FA. Oral bioavailability improvement of felodipine using tailored microemulsion: Surface science, ex vivo and in vivo studies. Int J Pharm. 2021;596:120202.

    Article  CAS  Google Scholar 

  24. Sriramulu D, Reed EL, Annamalai M, Venkatesan TV, Valiyaveettil S. Synthesis and characterization of superhydrophobic, self-cleaning NIR-reflective silica nanoparticles. Sci Rep. 2016;6(1):1–10.

    Article  Google Scholar 

  25. Venkatathri N, Yoo J. Synthesis and characterization of silica nanosphere from octadecyltrimethoxy silane. Bull Kor Chem Soc. 2008;29(1):29–30.

    Article  CAS  Google Scholar 

  26. Maulvi FA, Mangukiya MA, Patel PA, Vaidya RJ, Koli AR, Ranch KM, Shah DO. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2016;27(6):113.

    Article  Google Scholar 

  27. Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV, Shah DO, Maulvi FA. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol. 2020;57:101731.

    Article  CAS  Google Scholar 

  28. Maulvi FA, Patel PJ, Soni PD, Desai AR, Desai DT, Shukla MR, Ranch KM, Shah SA, Shah DO. Novel poly (vinylpyrrolidone)-coated silicone contact lenses to improve tear volume during lens wear: in vitro and in vivo studies. ACS Omega. 2020;5(29):18148–54.

    Article  CAS  Google Scholar 

  29. Alvarez-Rivera F, Concheiro A, Alvarez-Lorenzo C. Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. Eur J Pharm Biopharm. 2018;122:126–36.

    Article  CAS  Google Scholar 

  30. Gulsen D, Chauhan A. Effect of water content on transparency, swelling, lidocaine diffusion in p-HEMA gels. J Membr Sci. 2006;269(1-2):35–48.

    Article  CAS  Google Scholar 

  31. Phan C-M, Weber S, Mueller J, Yee A, Jones L. A rapid extraction method to quantify drug uptake in contact lenses. Transl Vis Sci Technol. 2018;7(2):11.

  32. Lee SE, Kim SR, Park M. Oxygen permeability of soft contact lenses in different pH, osmolality and buffering solution. Intern J Ophthalmol. 2015;8(5):1037.

    Google Scholar 

  33. Tran N-P-D, Yang M-C. The ophthalmic performance of hydrogel contact lenses loaded with silicone nanoparticles. Polymers. 2020;12(5):1128.

    Article  CAS  Google Scholar 

  34. Luensmann D, Jones L. Albumin adsorption to contact lens materials: a review. Contact Lens Anterior Eye. 2008;31(4):179–87.

    Article  Google Scholar 

  35. Senchyna M, Jones L, Louie D, May C, Forbes I, Glasier M-A. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr Eye Res. 2004;28(1):25–36.

    Article  CAS  Google Scholar 

  36. Subbaraman LN, Glasier M-A, Senchyna M, Jones L. Stabilization of lysozyme mass extracted from lotrafilcon silicone hydrogel contact lenses. Optom Vis Sci. 2005;82(3):209–14.

    Article  Google Scholar 

  37. Ciolino JB, Hoare TR, Iwata NG, Behlau I, Dohlman CH, Langer R, Kohane DS. A drug-eluting contact lens. Invest Ophthalmol Vis Sci. 2009;50(7):3346–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xinghua.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1208/s12249-022-02306-9

Supplementary Information

ESM 1

(DOCX 44 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaojie, H., Fagang, J., Jun, J. et al. RETRACTED ARTICLE: Bimatoprost-Loaded Silica Shell–Coated Nanoparticles-Laden Soft Contact Lenses to Manage Glaucoma: In Vitro and In Vivo Studies. AAPS PharmSciTech 23, 33 (2022). https://doi.org/10.1208/s12249-021-02199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02199-0

Keywords

Navigation