Skip to main content
Log in

Preparation and Characterization of Stable Amorphous Glassy Solution of BCS II and IV Drugs

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 oC (RFX, DST, DLT, ITZ, SRL, APT, and CBZ). They were characterized visually and by NIR, NIR hyperspectroscopy (NIR-H), and XRPD. Stability were determined by exposing open vials to 40 oC/75% RH for a week. AGSs behave like a glassy solid at room temperature and liquified above 60 oC. The solubility of APT, DLT, SRL, APZ, RFX, CBZ, TAC and CYS in SAIB was 0.4±0.0, 1.7±0.4, 1.9±0.0, 21.6±2.6, 36.4±0.9, 76.5±4.0, 115.1±2.3, and 239.0±12.6 mg/g, respectively. NIR, NIR-H, and XRPD data indicated the amorphous nature of the AGSs. Furthermore, AGSs were stable against devitrification on exposure to high temperature and humidity. In summary, SAIB can be employed to develop stable AGSs of poorly soluble drugs to increase dissolution, and oral bioavailability with the addition of hydrophilic excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. FDA guidance for industry - Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, 2017.

  2. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  3. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen ML, Lee VHL, Hussain AS. Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm Res. 2002;19:921–5.

    Article  CAS  PubMed  Google Scholar 

  4. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Van den Mooter G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today. 2012;9:e71–e174.

    Google Scholar 

  6. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. 3rd ed. Weinheim, Germany: Wiley–VCH; 2004.

    Google Scholar 

  7. Rahman Z, Zidan AS, Samy R, Sayeed VA, Khan MA. Improvement of physicochemical properties of an antiepileptic drug by salt engineering. AAPS PharmSciTech. 2012;13:793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hauel N, Narr B, Ries U, Van Meel JC, Wienen W, Entzeroth M, inventors; Karl Thomae GmbH, assignee. Benzimidazoles useful as angiotensin-11 antagonists. United States Patent US 5591762. 1997.

  9. Rahman Z, Siddiqui A, Khan MA. Assessing the impact of nimodipine devitrification in the ternary cosolvent system through quality by design approach. Int J Pharm. 2013;455:113–23.

    Article  CAS  PubMed  Google Scholar 

  10. Taxotere FDA label. Accessed on June 05, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020449s084lbl.pdf

  11. Rahman Z, Siddiqui A, Bykadi S, Khan MA. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics. Int J Pharm. 2014;475:462–70.

    Article  CAS  PubMed  Google Scholar 

  12. Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453:65–79.

    Article  CAS  PubMed  Google Scholar 

  13. Rahman Z, Zidan AS, Khan MA. Risperidone solid dispersion for orally disintegrating tablet: its formulation design and non-destructive methods of evaluation. Int J Pharm. 2010;400:49–58.

    Article  CAS  PubMed  Google Scholar 

  14. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

    Article  CAS  PubMed  Google Scholar 

  15. List M, Sucker H. Pharmaceutical colloidal hydrosols for injection. GB Patent 2200048. 1998.

  16. Baker M, Naguib M. Propofol: the challenges of formulation. Anesthesiol. 2005;103:860–76.

    Article  CAS  Google Scholar 

  17. Skrdla PJ, Floyd PD, Dell'Orco PC. Predicting the solubility enhancement of amorphous drugs and related phenomena using basic thermodynamic principles and semi-empirical kinetic models. Int J Pharm. 2019;567:118465.

    Article  CAS  PubMed  Google Scholar 

  18. Peltonen L, Strachan CJ. Degrees of Order: A Comparison of nanocrystal and amorphous solids for poorly soluble drugs. Int J Pharm. 2020;586:119492.

    Article  CAS  PubMed  Google Scholar 

  19. Jha DK, Shah DS, Amin PD. Thermodynamic aspects of the preparation of amorphous solid dispersions of naringenin with enhanced dissolution rate. Int J Pharm. 2020;583:119363.

    Article  CAS  PubMed  Google Scholar 

  20. Schver GCRM, Nadvorny D, Lee PI. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: effects of swelling capacity and interplay between partition and diffusion. Int J Pharm. 2020;581:119292.

    Article  CAS  PubMed  Google Scholar 

  21. Chen B, Wang X, Zhang Y, Huang K, Liu H, Xu D, Li S, Liu Q, Huang J, Yao H, Lin X. Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from Selaginella doederleinii extract by amorphous solid dispersion. Drug Deliv. 2020;27:309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sironi D, Bauer-Brandl A, Brandl M, Rosenberg J, Fricker G. The influence of liquid intake on the performance of an amorphous solid dispersion in rats. Eur J Pharm Biopharm. 2020;152:296–8.

    Article  CAS  PubMed  Google Scholar 

  23. Jermain SV, Miller D, Spangenberg A, Lu X, Moon C, Su Y, Williams RO. Homogeneity of amorphous solid dispersions - an example with KinetiSol(®). Drug Dev Ind Pharm. 2019;45:724–35.

    Article  CAS  PubMed  Google Scholar 

  24. Abreu-Villela R, Schönenberger M, Caraballo I, Kuentz M. Early stages of drug crystallization from amorphous solid dispersion via fractal analysis based on chemical imaging. Eur J Pharm Biopharm. 2018;133:122–30.

    Article  CAS  PubMed  Google Scholar 

  25. Alonzo DE, Zhang GZG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27:608–18.

    Article  CAS  PubMed  Google Scholar 

  26. Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012;14:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dinunzio JC, Miller DA, Yang W, Mcginity JW, Williams RO 3rd. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol. Pharm. 2008;5:968–80.

    Article  CAS  PubMed  Google Scholar 

  28. Miller DA, Dinunzio JC, Yang W, Mcginity JW, Williams RO 3rd. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral ph transition. Drug Dev Ind Pharm. 2008;34:890–902.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma PK, Panda A, Pradhan A, Zhang J, Thakkar R, Whang CH, Repka MA, Murthy SN. Solid-state stability issues of drugs in transdermal patch formulations. AAPS. 2008;19:27–35.

    Google Scholar 

  30. European Medicines Agency. European Medicines Agency agrees to precautionary recall of Advagraf 0.5 mg capsule batches 2011. Accessed on Nov 30, 2020. https://www.ema.europa.eu/en/news/european-medicines-agency-agrees-precautionary-recall-advagraf-05-mg-capsule-batches.

  31. Wilson V, Lou X, Osterling DJ, Stolarik DF, Jenkins G, Gao W, Zhang GGZ, Taylor LS. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. Journal of Controlled Release. 2018;292:172–82.

    Article  CAS  PubMed  Google Scholar 

  32. Purohit HS, Trasi NS, Osterling DJ, Stolarik DF, Jenkins GJ, Gao W, Zhang GGZ, Taylor LS. Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. Mol Pharm. 2019 Aug 5;16(8):3617–25.

    Article  CAS  PubMed  Google Scholar 

  33. EFSA Panel on Food additives and Nutrient Sources added to Food (ANS). Re-evaluation of sucrose acetate isobutyrate (E 444) as a food additive. EFSA J. 2016;14(5):4489.

    Article  Google Scholar 

  34. SAIB safety data sheet. Accessed on May 27, 2021. http://ws.eastman.com/ProductCatalogApps/PageControllers/MSDS_PC.aspx?Product=71001070

  35. Code of Federal Regulations Title 21 - Sucrose acetate isobutyrate, Section 172.833, Part 172, Food additive permitted for direct addition to food for human consumption. Accessed on May 27, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.833

  36. CFSAN/Office of Food Additive Safety-Agency Response Letter GRAS Notice No. GRN 000623, August 1, 2016. Accessed on Dec 16, 2021. https://www.fda.gov/food/gras-notice-inventory/agency-response-letter-gras-notice-nogrn-000623

  37. Tant MA. Biopharmaceutic and pharmacokinetic studies of sucrose acetate isobutyrate as an excipient for oral drug delivery. Electronic Theses and Dissertations.2011, Paper 1345. Accessed on Sept 14, 2021.https://dc.etsu.edu/etd/1345.

  38. Lu Y, Yu Y, Tang X. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release. J Pharm Sci. 2007 Dec;96(12):3252–62.

    Article  CAS  PubMed  Google Scholar 

  39. Dharani S, Barakh Ali SF, Afrooz H, Mohamed EM, Cook P, Khan MA, Rahman Z. Development of methamphetamine abuse-deterrent formulations using sucrose acetate isobutyrate. J Pharm Sci. 2020 Mar;109(3):1338–46.

    Article  CAS  PubMed  Google Scholar 

  40. Barakh Ali SF, Dharani S, Afrooz H, Mohamed EM, Cook P, Khan MA, Rahman Z. Development of abuse-deterrent formulations using sucrose acetate isobutyrate. AAPS PharmSciTech. 2020;21(3):99.

    Article  CAS  PubMed  Google Scholar 

  41. Harloff-Helleberg S, Fliervoet LAL, Fanø M, Schmitt M, Antopolski M, Urtti A, Nielsen HM. Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals. Drug Deliv. 2019 Dec;26(1):532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Posimir FDA label. Accessed on Sept 14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/204803s000lbl.pdf

  43. SucroMateTM Equine FDA label. Accessed on Sept 14. https://animaldrugsatfda.fda.gov/adafda/views/#/home/previewsearch/141-319

  44. ICH – Validation of analytical procedures: Text and methodology, Q2(R1), 2005.

  45. Dharani S, Rahman Z, Sogra FBA, Hamideh A, Khan MA. Quantitative estimation of phenytoin sodium disproportionation in the formulations using vibration spectroscopies and multivariate methodologies. Int J Pharm. 2018;539:65–74.

    Article  CAS  PubMed  Google Scholar 

  46. PubChem-National Library of Medicine. Accessed on Sept 14, 2021. https://pubchem.ncbi.nlm.nih.gov/

  47. Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, Lu M, Wu C. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol. 2014;66(2):148–66.

    Article  CAS  PubMed  Google Scholar 

  48. Jankovic S, Tsakiridou G, Ditzinger F, Koehl NJ, Price DJ, Ilie AR, Kalantzi L, Kimpe K, Holm R, Nair A, Griffin B, Saal C, Kuentz M. Application of the solubility parameter concept to assist with oral delivery of poorly water-soluble drugs - a PEARRL review. J Pharm Pharmacol. 2019;71(4):441–63.

    Article  CAS  PubMed  Google Scholar 

  49. Salahinejad M, Le TC, Winkler DA. Capturing the crystal: Prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. J. Chem. Inf. Model. 2013;53:223–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ong HJ, Pinal R. Drug Solubilization by means of a surface-modified edible biopolymer enabled by hot melt extrusion. J Pharm Sci. 2018;107(1):402–11.

    Article  CAS  PubMed  Google Scholar 

  51. De la Guardia M, Armenta S. Avoiding Sample Treatments. In: Comprehensive analytical chemistry. Elsevier; 2011. p. 59–86.

    Google Scholar 

  52. Scotter CNG. Infrared spectroscopy. In: Encyclopedia of analytical science by Worsfold P, Townshend A, Poole C. Elsevier; 2005. p. 415–26.

    Chapter  Google Scholar 

  53. Rahman Z, Siddiqui A, Bykadi S, Khan MA. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion. J Pharm Sci. 2014;103:2376–85.

    Article  CAS  PubMed  Google Scholar 

  54. Korang-Yeboah M, Akhtar S, Siddiqui A, Rahman Z, Khan MA. Application of NIR chemometric methods for quantification of the crystalline fraction of warfarin sodium in drug product. Drug Dev Ind Pharm. 2016;42:584–94.

    Article  CAS  PubMed  Google Scholar 

  55. Zidan AS, Rahman Z, Sayeed V, Raw A, Yu L, Khan MA. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Int J Pharm. 2012;423:341–50.

    Article  CAS  PubMed  Google Scholar 

  56. Berthiaux H, Mosorov V, Tomczak L, Gatumel C, Demeyre JF. Principal component analysis for characterising homogeneity in powder mixing using image processing techniques. Chem. Eng Process. 2006;45:397–403.

    Article  CAS  Google Scholar 

  57. Khuroo T, Dharani S, Mohamed EM, Immadi S, Wu Z, Khan MA, Lu D, Nehete P, Rahman Z. Ultra-long acting prodrug of dolutegravir and delivery system - Physicochemical, pharmacokinetic and formulation characterizations. Int J Pharm. 2021;607:120889.

    Article  CAS  PubMed  Google Scholar 

  58. Zou F, Chen Q, Yang P, Zhou J, Wu J, Zhuang W, Ying H. Solution-Mediated Polymorphic Transformation: From Amorphous to Crystals of Disodium Guanosine 5′-Monophosphate in Ethanol. Ind Eng Chem Res. 2017;56:8274–82.

    Article  CAS  Google Scholar 

  59. Tian B, Ding Z, Zong S, Yang J, Wang N, Wang T, Huang X, Hao H. Manipulation of pharmaceutical polymorphic transformation process using excipients. Curr Pharm Des. 2020;26(21):2553–63.

    Article  CAS  PubMed  Google Scholar 

  60. Frank DS, Matzger AJ. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Mol Pharm. 2019;16(2):682–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Maintaining supersaturation in aqueous drug solutions: Impact of different polymers on induction times. Cryst. Growth Des. 2013;13(2):740–51.

    Article  CAS  Google Scholar 

  62. Johnson LM, Li Z, LaBelle AJ, Bates FS, Lodge TP, Hillmyer MA. Impact of polymer excipient molar mass and end groups on hydrophobic drug solubility enhancement. Macromolecules. 2017;50(3):1102–12.

    Article  CAS  Google Scholar 

  63. Mosquera-Giraldo LI, Borca CH, Meng X, Edgar KJ, Slipchenko LV, Taylor LS. Mechanistic design of chemically diverse polymers with applications in oral drug delivery. Biomacromolecules. 2016;17(11):3659–71.

    Article  CAS  PubMed  Google Scholar 

  64. Dharani S, Barakh Ali SF, Afrooz H, Mohamed EM, Cook P, Khan MA, Rahman Z. Development of methamphetamine abuse-deterrent formulations using sucrose acetate isobutyrate. Journal of Pharmaceutical Sciences. 2020;109(3):1338–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research reported in this paper was funded by Eastman Chemical Company, Kingsport, TN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyaur Rahman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharani, S., Sediri, K., Cook, P. et al. Preparation and Characterization of Stable Amorphous Glassy Solution of BCS II and IV Drugs. AAPS PharmSciTech 23, 35 (2022). https://doi.org/10.1208/s12249-021-02198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02198-1

Keywords

Navigation