Skip to main content
Log in

Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In recent years, orally disintegrating (OD) tablets have been continuously improved to increase efficacy. Herein, we focused on the benefits of cellulose nanofiber (CNF), a highly functional material, in OD tablet manufacturing. We studied its effects on the physical properties of tablets during manufacture. The analyzed tablet formulations included different content CNF (0–50%; 6 preparations), lactose hydrate, acetaminophen, and magnesium stearate (Mg-St). We measured the angles of repose and evaluated the flowability of the powder. Tablets were prepared on a tabletop and rotary tableting presses, whereafter their weight, drug content, hardness, friability, and disintegration time were evaluated. Although CNF addition slightly reduced powder flowability, continuous tableting was feasible via direct powder compression. Tablet hardness (~40 N) was comparable between CNF-containing (20%) tablets and those prepared with crystalline cellulose under 10 kN compression force. Disintegration time (~30 s) was similar between CNF-supplemented tablets and those supplemented with low-substituted hydroxypropyl cellulose, crospovidone, or croscarmellose sodium. At higher CNF fractions, tablet hardness increased, while friability decreased. Adding ≥30% CNF prolonged the tablet disintegration time. To set the optimized manufacturing condition for ensuring the desired tablet physical properties, we created contour plots for evaluating the effects of CNF concentration and compression force on hardness and disintegration time. A CNF concentration of 10–20% and a compression force of 12–13 kN would allow for the preparation of tablets with a hardness ≥30 N and a disintegration time ≤60 s. Altogether, addition of CNF to the OD tablet formulation for direct powder compression enhanced hardness and disintegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kawashima Y. The Society of Powder Technology, Japan: division of particulate preparation and design, editors. Compression molding technology of powder. Tokyo: Nikkan Kogyo Shimbun, Ltd.; 1998. p. 3–11.

  2. Blanco M, Alcalá M. Content uniformity and tablet hardness testing of intact pharmaceutical tablets by near infrared spectroscopy. Anal Chim Acta. 2006;557:353–9. https://doi.org/10.1016/j.aca.2005.09.070.

    Article  CAS  Google Scholar 

  3. Moes JJ, Ruijken MM, Gout E, Frijlink HW, Ugwoke MI. Application of process analytical technology in tablet process development using NIR spectroscopy: blend uniformity, content uniformity and coating thickness measurements. Int J Pharm. 2008;357:108–18. https://doi.org/10.1016/j.ijpharm.2008.01.062.

    Article  CAS  PubMed  Google Scholar 

  4. Goodwin DJ, van den Ban S, Denham M, Barylski I. Real time release testing of tablet content and content uniformity. Int J Pharm. 2018;537:183–92. https://doi.org/10.1016/j.ijpharm.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Cui F, Yonezawa Y, Sunada H. Preparation and evaluation of combination tablet containing incompatible active ingredients. Chem Pharm Bull (Tokyo). 2003;51:772–8. https://doi.org/10.1248/cpb.51.772.

    Article  CAS  PubMed  Google Scholar 

  6. Takeuchi Y, Yoshida M, Ito A, Sunada H. Uniformity of drug content during pharmaceutical dry granulating by roller compaction and tableting processes. J Drug Deliv Sci Technol. 2009;19:119–24. https://doi.org/10.1016/S1773-2247(09)50019-6.

    Article  CAS  Google Scholar 

  7. Mahours GM, Shaaban DEZ, Shazly GA, Auda SH. The effect of binder concentration and dry mixing time on granules, tablet characteristics and content uniformity of low dose drug in high shear wet granulation. J Drug Deliv Sci Technol. 2017;39:192–9. https://doi.org/10.1016/j.jddst.2017.03.014.

    Article  CAS  Google Scholar 

  8. Sun WJ, Aburub A, Sun CC. Particle engineering for enabling a formulation platform suitable for manufacturing low-dose tablets by direct compression. J Pharm Sci. 2017;106:1772–7. https://doi.org/10.1016/j.xphs.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa K. Development of excipients for direct compression by fluidized bed granulation. Pharm Tech Jpn. 2018;34:93–7.

    CAS  Google Scholar 

  10. Yoshida I, Sakai Y. The applications of the content uniformity test and the weight variation test on process validation tests of multiple ingredient preparations. Chem Pharm Bull. 1999;47:678–83. https://doi.org/10.1248/cpb.47.678.

    Article  CAS  Google Scholar 

  11. Katori N, Aoyagi N, Kojima S. The study of the applicability of content uniformity and weight variation test—the state of commercial tablets and capsules in Japan. Chem Pharm Bull. 2001;49:1412–9. https://doi.org/10.1248/cpb.49.1412.

    Article  CAS  Google Scholar 

  12. Lukášová I, Muselík J, Franc A, Goněc R, Mika F, Vetchý D. Factor analysis in optimization of formulation of high content uniformity tablets containing low dose active substance. Eur J Pharm Sci. 2017;109:541–7. https://doi.org/10.1016/j.ejps.2017.09.017.

    Article  CAS  PubMed  Google Scholar 

  13. Makino T. The first of direct compression to accelerate pharmaceutical development and reduce cost of dosage form. Pharm Tech Jpn. 2017;33:2309–11.

    Google Scholar 

  14. Hara Y. Development of direct tableting technology for Pletaal OD tablet. Pharm Tech Jpn. 2017;33:2313–6.

    Google Scholar 

  15. Katayama T, Terasawa K, Takeuchi T, Okuda Y. Formulation design of olanzapine orally disintegration tablet “TOWA”—direct compression—The first choice in the manufacture of tablets. Pharm Tech Jpn. 2017;33:2317–20.

    CAS  Google Scholar 

  16. Makino T, Hoshino T, Tsuchiya A, Oneda Y. Analysis and evaluation the super-high speed compression—securing of content uniformity. Pharm Tech Jpn. 2018;34:283–7.

    Google Scholar 

  17. United States Food and Drug Administration. Orally disintegrating tablets. Guidance for industry. Rockville. Maryland: FDA; 2008.

  18. Fu Y, Yang S, Jeong SH, Kimura S, Park K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carrier Syst. 2004;21:433–76. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i6.10.

    Article  CAS  PubMed  Google Scholar 

  19. Goel H, Rai P, Rana V, Tiwary AK. Orally disintegrating systems: innovations in formulation and technology. Recent Pat Drug Deliv Formul. 2008;2:258–74. https://doi.org/10.2174/187221108786241660.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Husban FA, El-Shaer AM, Jones RJ, Mohammed AR. Recent patents and trends in orally disintegrating tablets. Recent Pat Drug Deliv Formul. 2010;4:178–97. https://doi.org/10.2174/187221110793237574.

    Article  CAS  Google Scholar 

  21. Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharm. 2011;61:117–39. https://doi.org/10.2478/v10007-011-0020-8.

    Article  CAS  PubMed  Google Scholar 

  22. Namiki N. Clinical functionality required for orally disintegrating tablets selected as the next generation type. YAKUGAKU ZASSHI. 2015;135:237–43. https://doi.org/10.1248/yakushi.14-00228-3.

    Article  CAS  PubMed  Google Scholar 

  23. Okuda Y, Irisawa Y, Okimoto K, Osawa T, Yamashita S. A new formulation for orally disintegrating tablets using a suspension spray-coating method. Int J Pharm. 2009;382:80–7. https://doi.org/10.1016/j.ijpharm.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  24. Douroumis DD, Gryczke A, Schminke S. Development and evaluation of cetirizine HCl taste-masked oral disintegrating tablets. AAPS PharmSciTech. 2011;12:141–51. https://doi.org/10.1208/s12249-010-9569-7.

    Article  PubMed  Google Scholar 

  25. Stirnimann T, Di Maiuta ND, Gerard DE, Alles R, Huwyler J, Puchkov M. Functionalized calcium carbonate as a novel pharmaceutical excipient for the preparation of orally dispersible tablets. Pharm Res. 2013;30:1915–25. https://doi.org/10.1007/s11095-013-1034-3.

    Article  CAS  PubMed  Google Scholar 

  26. European Pharmacopoeia (2016) Orodispersible tablets. European directorate for the quality of medicines (EDQM), council of Europe, 8th ed. Strasbourg, France; 2016. p. 811.

  27. Hu X, Li Y, Zhang E, Wang X, Xing M, Wang Q, Lei J, Huang H. Preparation and evaluation of orally disintegrating tablets containing taste-masked microcapsules of berberine hydrochloride. AAPS PharmSciTech. 2013;14:29–37. https://doi.org/10.1208/s12249-012-9880-6.

    Article  CAS  PubMed  Google Scholar 

  28. Kande KV, Kotak DJ, Degani MS, Kirsanov D, Legin A, Devarajan PV. Microwave-assisted development of orally disintegrating tablets by direct compression. AAPS PharmSciTech. 2017;18:2055–66. https://doi.org/10.1208/s12249-016-0683-z.

    Article  CAS  PubMed  Google Scholar 

  29. Ministry of the Environment. Guidelines for the utilization and application of cellulose nanofiber towards the decarbonization and achievement of a circular economy. 2021. http://www.env.go.jp/earth/earth/ondanka/cnf/guideline_summaryen.pdf. Accessed 28 Nov 2021.

  30. The International Organization for Standardization. TS 20477: nanotechnologies–standard terms and their definition for cellulose nanomaterial. ISO. 2017. https://www.iso.org/obp/ui/#iso:std:68153:en. Accessed 28 Nov 2021.

  31. Plackett DV, Letchford K, Jackson JK, Burt HM. A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J. 2014;29:105–18. https://doi.org/10.3183/npprj-2014-29-01-p105-118.

    Article  CAS  Google Scholar 

  32. Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J. 2014;59:302–25. https://doi.org/10.1016/j.eurpolymj.2014.07.025.

    Article  CAS  Google Scholar 

  33. Svagan AJ, Benjamins JW, Al-Ansari Z, Shalom DB, Müllertz A, Wågberg L, et al. Solid cellulose nanofiber based foams –towards facile design of sustained drug delivery systems. J Control Release. 2016;244:74–82. https://doi.org/10.1016/j.jconrel.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  34. Bannow J, Benjamins JW, Wohlert J, Löbmann K, Svagan AJ. Solid nanofoams based on cellulose nanofibers and indomethacin—the effect of processing parameters and drug content on material structure. Int J Pharm. 2017;526:291–9. https://doi.org/10.1016/j.ijpharm.2017.04.041.

    Article  CAS  PubMed  Google Scholar 

  35. Löbmann K, Svagan AJ. Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. Int J Pharm. 2017;533:285–97. https://doi.org/10.1016/j.ijpharm.2017.09.064.

    Article  CAS  PubMed  Google Scholar 

  36. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S. Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer. 2017;132:368–93. https://doi.org/10.1016/j.polymer.2017.09.043.

    Article  CAS  Google Scholar 

  37. Sharip NS, Ariffin H. Cellulose nanofibrils for biomaterial applications. Mater Today Proc. 2019;16:1959–68. https://doi.org/10.1016/j.matpr.2019.06.074.

    Article  CAS  Google Scholar 

  38. Meneguin AB, da Silva BH, Sábio RM, de Sousa PZ, Manieri KF, de Freitas LAP, et al. Spray-dried bacterial cellulose nanofibers: a new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohydr Polym. 2020;249:116838. https://doi.org/10.1016/j.carbpol.2020.116838.

    Article  CAS  PubMed  Google Scholar 

  39. Liu S, Qamar SA, Qamar M, Basharat K, Bilal M. Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int J Biol Macromol. 2021;181:275–90. https://doi.org/10.1016/j.ijbiomac.2021.03.147.

    Article  CAS  PubMed  Google Scholar 

  40. Raghav N, Sharma MR, Kennedy JF. Nanocellulose: a mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl. 2021;2:100031. https://doi.org/10.1016/j.carpta.2020.100031.

    Article  Google Scholar 

  41. The Japanese Pharmacopoeia. General information, tablet hardness test. The Japanese Pharmacopoeia. Ministry of Health, Labour and Welfare, 18th ed; 2021. p 2641‒2 http://www.mhlw.go.jp/content/11120000/000788362.pdf.

  42. The Japanese Pharmacopoeia. General information, tablet friability test. The Japanese Pharmacopoeia. Ministry of Health, Labour and Welfare, 18th ed; 2021. p. 2642. https://www.mhlw.go.jp/content/11120000/000788362.pdf.

  43. The Japanese Pharmacopoeia. General tests, processes and apparatus, uniformity of dosage units. The Japanese Pharmacopoeia. Ministry of Health, Labour and Welfare, 18th ed; 2021. p. 147‒9. https://www.mhlw.go.jp/content/11120000/000788359.pdf.

  44. Guilford JP. Fundamental statistics in psychology and education. New York: McGraw-Hill; 1956.

    Google Scholar 

  45. Carr RL. Evaluating flowability properties of solids. Chem Eng. 1965;18:163–8.

    Google Scholar 

Download references

Acknowledgements

The authors thank Daio Paper Corp. for providing cellulose nanofiber.

Author information

Authors and Affiliations

Authors

Contributions

S. N. wrote the manuscript and designed experiments. T. F. carried out the tableting experiment. T. S. designed the experiments. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Takatoshi Sakamoto.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, S., Fukai, T. & Sakamoto, T. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive. AAPS PharmSciTech 23, 37 (2022). https://doi.org/10.1208/s12249-021-02194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02194-5

KEY WORDS

Navigation