Skip to main content

Advertisement

Log in

Transdermal Enhancement Strategy of Lappaconitine: Alteration of Keratin Configuration by Counter-Ion

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a lappaconitine (LA) transdermal patch with counter-ion to increase the transdermal permeability of the drug, and a theory of counter-ion altering the conformation of the skin keratin was put forward based on the in vitro skin permeation study and physicochemical properties of ion-pairs. Formulation factors including pressure sensitive adhesives (PSAs), drug-loading, counter-ions and molar ratios of counter-ion were screened by in vitro skin permeation study. The optimized formulation was composed of 7% LA, 1.5 mole cinnamic acid and AAOH (PSA containing hydroxyl group synthesized by our laboratory) as an adhesive matrix. The optimized patch was evaluated by the pharmacokinetic and analgesic pharmacodynamic studies. AUC0–t and pain inhibition ratio of the optimized patch were 2450.40 ± 848.52 h ng/mL and 81.18%, which showed good absorption into the skin and excellent analgesic effect. The mechanism of facilitated transdermal drug permeation by counter-ion was investigated by ATR-FTIR, thermal analysis, FTIR, XPS and molecular docking. The results indicated that after the formation of ion-pairs, the excess counter-ions would alter the conformation of the skin keratin, thus increasing the transdermal penetration of LA. In conclusion, the LA patch was successfully optimized, and the effect of counter-ions on the skin was clarified at the molecular level. These findings provided additional references for the application of counter-ion in the transdermal drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y-f L, Zheng Y-m YY, Gan Y, Gao Z-b. Inhibitory effects of lappaconitine on the neuronal isoforms of voltage-gated sodium channels. Acta Pharmacol Sin. 2019;40(4):451–9.

    Article  Google Scholar 

  2. Wright SN. Irreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine. Mol Pharmacol. 2001;59(2):183–92.

    Article  CAS  Google Scholar 

  3. Ou S, Zhao Y-D, Xiao Z, Wen H-Z, Cui J, Ruan H-Z. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion. Neurochem Int. 2011;58(5):564–73.

    Article  CAS  Google Scholar 

  4. Chen F, Shen X, Huang P, Fu H, Jin Y, Wen C. Quantification of lappaconitine in mouse blood by UPLC-MS/MS and its application to a pharmacokinetic study. Biomed Res Int. 2019;2019:1–6.

    Google Scholar 

  5. Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–70.

    Article  CAS  Google Scholar 

  6. Teng G, Zhang X, Zhang C, Chen L, Sun W, Qiu T, Zhang J. Lappaconitine trifluoroacetate contained polyvinyl alcohol nanofibrous membranes: characterization, biological activities and transdermal application. Mater Sci Eng C. 2020;108:110515.

    Article  CAS  Google Scholar 

  7. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  Google Scholar 

  8. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24.

    Article  CAS  Google Scholar 

  9. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14.

    Article  CAS  Google Scholar 

  10. Wang H, Tian Q, Quan P, Liu C, Fang L. Probing the role of ion-pair strategy in controlling dexmedetomidine penetrate through drug-in-adhesive patch: mechanistic insights based on release and percutaneous absorption process. AAPS PharmSciTech. 2020;21(1):1–14.

    Article  Google Scholar 

  11. Ma X, Fang L, Guo J, Zhao N, He Z. Effect of counter-ions and penetration enhancers on the skin permeation of flurbiprofen. J Pharm Sci. 2010;99(4):1826–37.

    Article  CAS  Google Scholar 

  12. Nam SH, Xu YJ, Nam H, Jin G-W, Jeong Y, An S, et al. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm. 2011;419(1-2):114–20.

    Article  CAS  Google Scholar 

  13. Song T, Quan P, Xiang R, Fang L. Regulating the skin permeation rate of escitalopram by ion-pair formation with organic acids. AAPS PharmSciTech. 2016;17(6):1267–73.

    Article  CAS  Google Scholar 

  14. Liu C, Quan P, Li S, Zhao Y, Fang L. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: the roles of intermolecular interaction and adhesive mobility variation in drug controlled release. J Control Release. 2017;252:83–94.

    Article  CAS  Google Scholar 

  15. Li Q, Wan X, Liu C, Fang L. Investigating the role of ion-pair strategy in regulating nicotine release from patch: mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive. Eur J Pharm Sci. 2018;119:102–11.

    Article  CAS  Google Scholar 

  16. Lu Y, Kim S, Park K. In vitro–in vivo correlation: perspectives on model development. Int J Pharm. 2011;418(1):142–8.

    Article  CAS  Google Scholar 

  17. Quan P, Jiao B, Shang R, Liu C, Fang L. Alternative therapy of rheumatoid arthritis with a novel transdermal patch containing Siegesbeckiae Herba extract. J Ethnopharmacol. 2021;265:113294.

    Article  CAS  Google Scholar 

  18. Berton P, Di Bona KR, Yancey D, Rizvi SA, Gray M, Gurau G, et al. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic. ACS Med Chem Lett. 2017;8(5):498–503.

    Article  CAS  Google Scholar 

  19. Zhao H, Liu C, Quan P, Wan X, Shen M, Fang L. Mechanism study on ion-pair complexes controlling skin permeability: effect of ion-pair dissociation in the viable epidermis on transdermal permeation of bisoprolol. Int J Pharm. 2017;532(1):29–36.

    Article  CAS  Google Scholar 

  20. Kalia YN, Guy RH. Modeling transdermal drug release. Adv Drug Delivery Rev. 2001;48(2-3):159–72.

    Article  CAS  Google Scholar 

  21. Jiang J, Quan P, Chen Y, Fang L. Mechanistic investigation and reversible effect of 2-isopropyl-5-methylcyclohexyl heptanoate on the in vitro percutaneous absorption of indomethacin. Drug Deliv. 2014;21(1):26–33.

    Article  CAS  Google Scholar 

  22. Yang D, Liu C, Piao H, Quan P, Fang L. Enhanced drug loading in the drug-in-adhesive transdermal patch utilizing a drug–ionic liquid strategy: insight into the role of ionic hydrogen bonding. Mol Pharm. 2021;18(3):1157–66.

    Article  CAS  Google Scholar 

  23. Liu X, Quan P, Li S, Liu C, Zhao Y, Zhao Y, Fang L. Time dependence of the enhancement effect of chemical enhancers: molecular mechanisms of enhancing kinetics. J Control Release. 2017;248:33–44.

    Article  CAS  Google Scholar 

  24. Uppoor VRS. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Release. 2001;72(1-3):127–32.

    Article  CAS  Google Scholar 

  25. Schiller R, Funke A, Günther C. DSC measurements on full thickness mice skin. J Therm Anal Calorim. 2004;77(2):497–510.

    Article  CAS  Google Scholar 

  26. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18(1):19–40.

    Article  CAS  Google Scholar 

  27. Liu C, Hui M, Quan P, Fang L. Drug in adhesive patch of palonosetron: effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation. Int J Pharm. 2016;511(2):1088–97.

    Article  CAS  Google Scholar 

  28. Fang L, Numajiri S, Kobayashi D, Ueda H, Nakayama K, Miyamae H, Morimoto Y. Physicochemical and crystallographic characterization of mefenamic acid complexes with alkanolamines. J Pharm Sci. 2004;93(1):144–54.

    Article  CAS  Google Scholar 

  29. Strati F, Neubert RH, Opálka L, Kerth A, Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur J Pharm Sci. 2021;157:105620.

    Article  CAS  Google Scholar 

  30. Notman R, den Otter WK, Noro MG, Briels WJ, Anwar J. The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys J. 2007;93(6):2056–68.

    Article  CAS  Google Scholar 

  31. Babita K, Kumar V, Rana V, Jain S, Tiwary AK. Thermotropic and spectroscopic behavior of skin: relationship with percutaneous permeation enhancement. Curr Drug Deliv. 2006;3(1):95–113.

    Article  CAS  Google Scholar 

  32. Kaushik D, Michniak-Kohn B. Percutaneous penetration modifiers and formulation effects: thermal and spectral analyses. AAPS PharmSciTech. 2010;11(3):1068–83.

    Article  CAS  Google Scholar 

  33. Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. BBA-Biomembranes. 2008;1778(5):1344–55.

    Article  CAS  Google Scholar 

  34. Tamm LK, Tatulian SA. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys. 1997;30(4):365–429.

    Article  CAS  Google Scholar 

  35. Cai Y, Tian Q, Liu C, Fang L. Development of long-acting rivastigmine drug-in-adhesive patch utilizing ion-pair strategy and characterization of controlled release mechanism. Eur J Pharm Sci. 2021;161:105774.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ML: methodology, investigation, formal analysis, data curation, writing—original draft. CL: supervision, writing—review and editing. YC: resources. HS: investigation, formal analysis, validation. LF: conceptualization, resources, project administration, funding acquisition.

Corresponding author

Correspondence to Liang Fang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, C., Cai, Y. et al. Transdermal Enhancement Strategy of Lappaconitine: Alteration of Keratin Configuration by Counter-Ion. AAPS PharmSciTech 23, 61 (2022). https://doi.org/10.1208/s12249-021-02190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02190-9

KEY WORDS

Navigation