Bi M, Sun CC, Alvarez F, Alvarez-Nunez F. The manufacture of low-dose oral solid dosage form to support early clinical studies using an automated micro-filing system. AAPS PharmSciTech. 2011;12(1):88–95. https://doi.org/10.1208/s12249-010-9549-y.
CAS
Article
PubMed
Google Scholar
Chen L, He Z, Kunnath KT, Fan S, Wei Y, Ding X, et al. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Int J Pharm. 2019;557:354–65. https://doi.org/10.1016/j.ijpharm.2018.12.055.
CAS
Article
PubMed
Google Scholar
Leane M, Pitt K, Reynolds G, Anwar J, Charlton S, Crean A, et al. A proposal for a drug product manufacturing classification system (MCS) for oral solid dosage forms. Pharm Dev Technol. 2015;20(1):12–21. https://doi.org/10.3109/10837450.2014.954728.
CAS
Article
PubMed
Google Scholar
Ely DR, Carvajal MT. Determination of the scale of segregation of low dose tablets using hyperspectral imaging. Int J Pharm. 2011;414(1–2):157–60. https://doi.org/10.1016/j.ijpharm.2011.05.027.
CAS
Article
PubMed
Google Scholar
Gentzler M, Michaels JN, Tardos GI. Quantification of segregation potential for polydisperse, cohesive, multi-component powders and prediction of tablet die-filling performance - a methodology for practical testing, re-formulation and process design. Powder Technol. 2015;285:96–102. https://doi.org/10.1016/j.powtec.2015.04.037.
CAS
Article
Google Scholar
He X, Han X, Ladyzhynsky N, Deanne R. Assessing powder segregation potential by near infrared (NIR) spectroscopy and correlating segregation tendency to tabletting performance. Powder Technol. 2013;236:85–99. https://doi.org/10.1016/j.powtec.2012.05.021.
CAS
Article
Google Scholar
Jaklič M, Kočevar K, Srčič S, Dreu R. Particle size-based segregation of pharmaceutical powders in a vertical chute with a closed bottom: an experimental evaluation. Powder Technol. 2015;278:171–80. https://doi.org/10.1016/j.powtec.2015.03.021.
CAS
Article
Google Scholar
Liu R, Yin X, Li H, Shao Q, York P, He Y, et al. Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction. Int J Pharm. 2013;445(1–2):125–33. https://doi.org/10.1016/j.ijpharm.2013.02.010.
CAS
Article
PubMed
Google Scholar
Asachi M, Hassanpour A, Ghadiri M, Bayly A. Experimental evaluation of the effect of particle properties on the segregation of ternary powder mixtures. Powder Technol. 2018;336:240–54. https://doi.org/10.1016/j.powtec.2018.05.017.
CAS
Article
Google Scholar
Roskilly SJ, Colbourn EA, Alli O, Williams D, Paul KA, Welfare EH, et al. Investigating the effect of shape on particle segregation using a Monte Carlo simulation. Powder Technol. 2010;203(2):211–22. https://doi.org/10.1016/j.powtec.2010.05.011.
CAS
Article
Google Scholar
Alizadeh M, Hassanpour A, Pasha M, Ghadiri M, Bayly A. The effect of particle shape on predicted segregation in binary powder mixtures. Powder Technol. 2017;319:313–22. https://doi.org/10.1016/j.powtec.2017.06.059.
CAS
Article
Google Scholar
Tang P, Puri VM. Methods for minimizing segregation: a review. Part Sci Technol. 2004;22(4):321–37. https://doi.org/10.1080/02726350490501420.
CAS
Article
Google Scholar
Xie L, Wu H, Shen M, Augsburger LL, Lyon RC, Khan MA, et al. Quality-by-design (QbD): effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powder measured by the ASTM D 6940–04 segregation tester. J Pharm Sci. 2008;97(10):4485–97. https://doi.org/10.1002/jps.21320.
CAS
Article
PubMed
Google Scholar
Scheibelhofer O, Balak N, Wahl PR, Koller DM, Glasser BJ, Khinast JG. Monitoring blending of pharmaceutical powders with multipoint NIR spectroscopy. AAPS PharmSciTech. 2013;14(1):234–44. https://doi.org/10.1208/s12249-012-9910-4.
CAS
Article
PubMed
Google Scholar
Harnby N. An engineering view of pharmaceutical powder mixing. Pharm Sci Technol Today. 2000;3(9):303–9. https://doi.org/10.1016/s1461-5347(00)00283-2.
CAS
Article
PubMed
Google Scholar
Sommier N, Porion P, Evesque P, Leclerc B, Tchoreloff P, Couarraze G. Magnetic resonance imaging investigation of the mixing-segregation process in a pharmaceutical blender. Int J Pharm. 2001;222(2):243–58. https://doi.org/10.1016/s0378-5173(01)00718-9.
CAS
Article
PubMed
Google Scholar
Xiao H, Fan Y, Jacob KV, Umbanhowar PB, Kodam M, Koch JF, et al. Continuum modeling of granular segregation during hopper discharge. Chem Eng Sci. 2019;193:188–204. https://doi.org/10.1016/j.ces.2018.08.039.
CAS
Article
Google Scholar
Teżyk M, Jakubowska E, Milczewska K, Milanowski B, Voelkel A, Lulek J. The influence of direct compression powder blend transfer method from the container to the tablet press on product critical quality attributes: a case study. Drug Dev Ind Pharm. 2017;43(6):911–6. https://doi.org/10.1080/03639045.2016.1278016.
CAS
Article
PubMed
Google Scholar
Lakio S, Siiriä S, Räikkönen H, Airaksinen S, Närvänen T, Antikainen O, et al. New insights into segregation during tabletting. Int J Pharm. 2010;397(1–2):19–26. https://doi.org/10.1016/j.ijpharm.2010.06.041.
CAS
Article
PubMed
Google Scholar
Mateo-Ortiz D, Muzzio FJ, Méndez R. Particle size segregation promoted by powder flow in confined space: the die filling process case. Powder Technol. 2014;262:215–22. https://doi.org/10.1016/j.powtec.2014.04.023.
CAS
Article
Google Scholar
Williams JC. The segregation of particulate materials. A review Powder Technol. 1976;15(2):245–51. https://doi.org/10.1016/0032-5910(76)80053-8.
Article
Google Scholar
McCarthy JJ. Turning the corner in segregation. Powder Technol. 2009;192(2):137–42. https://doi.org/10.1016/j.powtec.2008.12.008.
CAS
Article
Google Scholar
Li H, McCarthy JJ. Cohesive particle mixing and segregation under shear. Powder Technol. 2006;164(1):58–64. https://doi.org/10.1016/j.powtec.2005.12.018.
CAS
Article
Google Scholar
Li H, McCarthy JJ. Controlling cohesive particle mixing and segregation. Phys Rev Lett. 2003;90(18):4. https://doi.org/10.1103/PhysRevLett.90.184301.
CAS
Article
Google Scholar
Yip CW, Hersey JA. Ordered powder mixing. Nature. 1976 Jul 1;262(5565):202–3. https://doi.org/10.1038/262202a0.
CAS
Article
Google Scholar
Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 1975;11(1):41–4. https://doi.org/10.1016/0032-5910(75)80021-0.
Article
Google Scholar
Alyami H, Dahmash E, Bowen J, Mohammed AR. An investigation into the effects of excipient particle size, blending techniques & processing parameters on the homogeneity & content uniformity of a blend containing low-dose model drug. PLoS ONE. 2017;12(6):1–19. https://doi.org/10.1371/journal.pone.0178772.
CAS
Article
Google Scholar
Johnson MCR. Powder mixing in direct compression formulation by ordered and random processes. J Pharm Pharmacol. 1979;31(1):273–6. https://doi.org/10.1111/j.2042-7158.1979.tb13500.x.
CAS
Article
PubMed
Google Scholar
Mao C, Thalladi VR, Kim DK, Ma SH, Edgren D, Karaborni S. Harnessing ordered mixing to enable direct-compression process for low-dose tablet manufacturing at production scale. Powder Technol. 2013;239:290–9. https://doi.org/10.1016/j.powtec.2013.02.016.
CAS
Article
Google Scholar
Swaminathan V, Kildsig DO. The effect of particle morphology on the physical stability of pharmaceutical powder mixtures: the effect of surface roughness of the carrier on the stability of ordered mixtures. Drug Dev Ind Pharm. 2000;26(4):365–73. https://doi.org/10.1081/ddc-100101242.
CAS
Article
PubMed
Google Scholar
Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharm Sci. 2005;8(1):76–93.
CAS
PubMed
Google Scholar
Lamešić D, Planinšek O, Lavrič Z, Ilić I. Spherical agglomerates of lactose with enhanced mechanical properties. Int J Pharm. 2017 Jan 10;516(1–2):247–57. https://doi.org/10.1016/j.ijpharm.2016.11.040.
CAS
Article
PubMed
Google Scholar
Lamešić D, Planinšek O, German II. Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity. Eur J Pharm Sci. 2018 May;121:218–27. https://doi.org/10.1016/j.ejps.2018.05.028.
CAS
Article
PubMed
Google Scholar
Sundell-bredenberg S, Nystrom C. The possibility of achieving an interactive mixture with high dose homogeneity containing an extremely low proportion of a micronised drug. 2001;12:285–95. https://doi.org/10.1016/s0928-0987(00)00176-7.
CAS
Article
Google Scholar
Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19. https://doi.org/10.1021/ja01269a023.
CAS
Article
Google Scholar
Hausner HH. Friction conditions in a mass of metal powder. Int J Powder Met. 1967;3(4):7–13.
Google Scholar
Shah UV, Karde V, Ghoroi C, Heng JYY. Influence of particle properties on powder bulk behaviour and processability. Int J Pharm. 2017;518(1–2):138–54. https://doi.org/10.1016/j.ijpharm.2016.12.045.
CAS
Article
PubMed
Google Scholar
Farber L, Tardos G, Michaels JN. Use of X-ray tomography to study the porosity and morphology of granules. 2003;132:57–63. https://doi.org/10.1016/S0032-5910(03)00043-3.
CAS
Article
Google Scholar
Zeitler JA, Gladden LF. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur J Pharm Biopharm. 2008;71(1):2–22. https://doi.org/10.1016/j.ejpb.2008.08.012.
CAS
Article
PubMed
Google Scholar
Alexander B, Roddy M, Brone D, et al. A method to quantitatively describe powder segregation during discharge from a vessel. Pharm. Tech. 2000 Yearbook. 6–21.
Marucci M, Al-Saaigh B, Boissier C, Wahlgren M, Wikström H. Sifting segregation of ideal blends in a two-hopper tester: segregation profiles and segregation magnitudes. Powder Technol. 2018;331:60–7. https://doi.org/10.1016/j.powtec.2018.01.070.
CAS
Article
Google Scholar