Skip to main content

Advertisement

Log in

Low-Frequency Sonophoresis as an Active Approach to Potentiate the Transdermal Delivery of Agomelatine-Loaded Novasomes: Design, Optimization, and Pharmacokinetic Profiling in Rabbits

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The first melatonergic antidepressant drug, agomelatine (AGM), is commonly used for controlling major depressive disorders. AGM suffers low (< 5%) oral bioavailability owing to the hepatic metabolism. The current work investigated the potential of low-frequency sonophoresis on enhancing transdermal delivery of AGM-loaded novasomes and, hence, bioavailability of AGM. Drug-loaded novasomes were developed using free fatty acid (stearic acid or oleic acid), surfactant (span 60 or span 80), and cholesterol via thin-film hydration technique. The systems (N1-N16) were assessed for zeta potential (ZP), particle size (PS), encapsulation efficiency (EE%), and drug percent released after 0.5 h (Q0.5 h) and 8 h (Q8h), drug-crystallinity, morphology, and ex vivo drug permeation. Skin pre-treatment with low-frequency ultrasound (LFU) waves, via N13-novasomal gel systems, was optimized to enhance ex vivo drug permeation. Influences of LFU mode (continuous or pulsed), duty cycle (50% or 100%), and application period (10 or 15 min) were optimized. The pharmacokinetics of the optimized system (N13-LFU-C4) was assessed in rabbits. N13 was the best achieved novasomal system with respect to PS (471.6 nm), ZP (− 63.6 mv), EE% (60.5%), Q0.5 h (27.8%), Q8h (83.9%), flux (15.5 μg/cm2/h), and enhancement ratio (6.9). N13-LFU-C4 was the optimized novasomal gel system (desirability; 0.997) which involves skin pre-treatment with LFU in a continuous mode, at 100% duty cycle, for 15 min. Compared to AGM dispersion, the significantly (P < 0.05) higher flux (26.7 μg/cm2/h), enhancement ratio (11.9), Cmax (118.23 ng/mL), and relative bioavailability (≈ 8.6 folds) could elucidate the potential of N13-LFU-C4 system in improving transdermal drug permeability and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article  Google Scholar 

  2. Zajecka JM. Clinical issues in long-term treatment with antidepressants. J Clin Psychiatry. 2000;61:20–5.

    PubMed  Google Scholar 

  3. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2c receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003;306(3):954–64. https://doi.org/10.1124/jpet.103.051797.paradigm.

    Article  CAS  PubMed  Google Scholar 

  4. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–66. https://doi.org/10.1016/S0140-6736(17)32802-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability optimization and in vivo bioavailability. Drug Deliv. 2017;24(1):1159–69. https://doi.org/10.1080/10717544.2017.1365392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ita K. Recent progress in transdermal sonophoresis. Pharm Dev Technol. 2015;22(4):458–66. https://doi.org/10.3109/10837450.2015.1116566.

    Article  CAS  PubMed  Google Scholar 

  7. Zorec B, Préat V, Miklavčič D, Pavšelj N. Active enhancement methods for intra- and transdermal drug delivery: a review. Zdr Vestn. 2013;82(5):339–56.

    Google Scholar 

  8. Tawfik MA, Tadros MI, Mohamed MI, Nageeb E-H. Low-frequency versus high-frequency ultrasound-mediated transdermal delivery of agomelatine-loaded invasomes: development, optimization and in-vivo pharmacokinetic assessment. Int J Nanomedicine. 2020;15:8893–910. https://doi.org/10.2147/IJN.S283911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nair A, Vyas H, Shah J, Kumar A. Effect of permeation enhancers on the iontophoretic transport of metoprolol tartrate and the drug retention in skin. Drug Deliv. 2011;18(1):19–25. https://doi.org/10.3109/10717544.2010.509361.

    Article  CAS  PubMed  Google Scholar 

  10. Ammar HO, Mohamed MI, Tadros MI, Fouly AA. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. J Pharm Investig. 2020;50:613–24. https://doi.org/10.1007/s40005-020-00491-y.

    Article  CAS  Google Scholar 

  11. Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Saraf S, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164(1):26–40. https://doi.org/10.1016/j.jconrel.2012.09.017.

  12. Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv. 2010;7(12):1415–32. https://doi.org/10.1517/17425247.2010.538679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boucaud A, Machet L, Arbeille B, Machet MC, Sournac M, Mavon A, et al. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm. 2001;228(1–2):69–77. https://doi.org/10.1016/S0378-5173(01)00820-1.

    Article  CAS  PubMed  Google Scholar 

  14. Boucaud A, Tessier L, Machet L, Vaillant L, Patat F. Transdermal delivery of insulin using low frequency ultrasound. In: Proceedings of the IEEE Ultrasonics Symposium. 2000. p. 1453–1456. doi:https://doi.org/10.1109/ultsym.2000.921597.

  15. Langer M, Lewis S, Fleshman S, Lewis G. “SonoBandage” a transdermal ultrasound drug delivery system for peripheral neuropathy. Proc Meet Acoust. 2013;19(1). https://doi.org/10.1121/1.4801417.

  16. Aldwaikat M, Alarjah M. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. Ultrason Sonochem. 2015;22:580–7. https://doi.org/10.1016/j.ultsonch.2014.02.017.

    Article  CAS  PubMed  Google Scholar 

  17. Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release. 2011;152(3):330–48. https://doi.org/10.1016/j.jconrel.2011.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh A, Malviya R, Sharma PK. Novasome-A breakthrough in pharmaceutical technology a review article. Adv Biol Res (Rennes). 2011;5(4):184–9.

    Google Scholar 

  19. Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation. Colloids Surf B Biointerfaces. 2018;170:258–65. https://doi.org/10.1016/j.colsurfb.2018.06.025.

    Article  CAS  PubMed  Google Scholar 

  20. Shinde M, Bali N, Rathod S, Karemore M, Salve P. Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles. Drug Dev Ind Pharm. 2020;46:826–45. https://doi.org/10.1080/03639045.2020.1757697.

    Article  CAS  PubMed  Google Scholar 

  21. Abd-Elal RMA, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374–86. https://doi.org/10.1080/10717544.2016.1183721.

    Article  CAS  PubMed  Google Scholar 

  22. Tscharnuter W. Photon correlation spectroscopy in particle sizing. In: Meyers RA, editors. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd; 2000. p. 5469–5485. https://doi.org/10.1002/9780470027318.a1512.

  23. Kassem MA, Aboul-Einien MH, El Taweel MM. Dry gel containing optimized felodipine-loaded transferosomes: a promising transdermal delivery system to enhance drug bioavailability. AAPS PharmSciTech. 2018;19(5):2155–73. https://doi.org/10.1208/s12249-018-1020-5.

    Article  CAS  PubMed  Google Scholar 

  24. Fatouh AM, Elshafeey AH, Abdelbary A. Agomelatine-based in situ gels for brain targeting via the nasal route: statistical optimization, in vitro, and in vivo evaluation. Drug Deliv. 2017;24(1):1077–85. https://doi.org/10.1080/10717544.2017.1357148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duarah S, Durai RD, Narayanan VHB. Nanoparticle-in-gel system for delivery of vitamin C for topical application. Drug Deliv Transl Res. 2017;7(5):750–60. https://doi.org/10.1007/s13346-017-0398-z.

    Article  CAS  PubMed  Google Scholar 

  26. Balzus B, Colombo M, Sahle FF, Zoubari G, Staufenbiel S, Bodmeier R. Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application. Int J Pharm. 2016;513(1–2):247–54. https://doi.org/10.1016/j.ijpharm.2016.09.033.

    Article  CAS  PubMed  Google Scholar 

  27. Tawfik MA, Tadros MI, Mohamed MI. Lipomers (lipid-polymer hybrid particles) of vardenafil hydrochloride: a promising dual platform for modifying the drug release rate and enhancing its oral bioavailability. AAPS PharmSciTech. 2018;19(8):3650–60. https://doi.org/10.1208/s12249-018-1191-0.

    Article  CAS  PubMed  Google Scholar 

  28. Ammar HO, Mohamed MI, Tadros MI, Fouly AA. Transdermal delivery of ondansetron hydrochloride via bilosomal systems: in vitro, ex vivo, and in vivo characterization studies. AAPS PharmSciTech. 2018;19(5):2276–87. https://doi.org/10.1208/s12249-018-1019-y.

    Article  CAS  PubMed  Google Scholar 

  29. Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25(1):12–22. https://doi.org/10.1080/10717544.2017.1410262.

    Article  CAS  PubMed  Google Scholar 

  30. Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res. 2019;29(1):73–85. https://doi.org/10.1080/08982104.2018.1430831.

    Article  CAS  PubMed  Google Scholar 

  31. Ammar HO, Tadros MI, Salama NM, Ghoneim AM. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride : development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics. Int J Nanomedicine. 2020;15:5671–85. https://doi.org/10.2147/IJN.S261764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skelly JP, Shah VP, Maibach HI, Guy RH, Wester RC, Flynn G, et al. FDA and AAPS report of the workshop on principles and practices of in vitro percutaneous penetration studies: relevance to bioavailability and bioequivalence. Pharm Res. 1987;4(3):265–7. https://doi.org/10.1023/A:1016428716506.

    Article  Google Scholar 

  33. Shinde M, Salve P, Rathod S. Development and evaluation of nanoparticles based transdermal patch of agomelatine for the treatment of depression. J Drug Deliv Ther. 2019;9 supple 4:126–144. https://doi.org/10.22270/jddt.v9i4-s.3229.

  34. Patil RR, Gaikwad RV, Samad A, Devarajan PV. Role of lipids in enhancing splenic uptake of polymer-lipid (LIPOMER) nanoparticles. J Biomed Nanotechnol. 2008;4(3):359–66. https://doi.org/10.1166/jbn.2008.320.

    Article  CAS  Google Scholar 

  35. Lingan MA, Sathali AA, Kumar MRV, Gokila A. Formulation and evaluation of topical drug delivery system containing clobetasol propionate niosomes. Sci Rev Chem Commun. 2011;1(1):7–17.

    Google Scholar 

  36. Abdelkader H, Ismail S, Kamal A, Alany RG. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: physicochemical characterization. Pharmazie. 2010;65(11):811–7. https://doi.org/10.1691/ph.2010.0138.

    Article  CAS  PubMed  Google Scholar 

  37. Nowroozi F, Almasi A, Javidi J, Haeri A, Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran J Pharm Res. 2018;17(Special Issue 2):1–11. https://doi.org/10.22037/ijpr.2018.2368.

  38. Kanicky JR, Shah DO. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J Colloid Interface Sci. 2002;256(1):201–7. https://doi.org/10.1006/jcis.2001.8009.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105:1–6. https://doi.org/10.1016/0378-5173(94)90228-3.

    Article  CAS  Google Scholar 

  40. Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100. https://doi.org/10.3109/10717544.2013.838077.

    Article  CAS  PubMed  Google Scholar 

  41. Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1–2):329–40. https://doi.org/10.1016/j.ijpharm.2015.03.033.

    Article  CAS  PubMed  Google Scholar 

  42. Makino K, Yamada T, Kimura M, Oka T, Ohshima H, Kondo T. Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys Chem. 1991;41(2):175–83. https://doi.org/10.1016/0301-4622(91)80017-L.

    Article  CAS  PubMed  Google Scholar 

  43. Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther. 2017;11:1815–25. https://doi.org/10.2147/DDDT.S102500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Wong HL, Shuhendler AJ, Rauth AM, Wu XY. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles. J Control Release. 2008;128(1):60–70. https://doi.org/10.1016/j.jconrel.2008.02.014.

    Article  CAS  PubMed  Google Scholar 

  45. Lee KL, Zhou Y. Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size. J Ultrasound Med. 2015;34(3):519–26. https://doi.org/10.7863/ultra.34.3.519.

    Article  PubMed  Google Scholar 

  46. Pereira TA, Ramos DN, Lopez RFV. Hydrogel increases localized transport regions and skin permeability during low frequency ultrasound treatment. Sci Rep. 2017;7:e44236. https://doi.org/10.1038/srep44236.

    Article  CAS  Google Scholar 

  47. Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther. 2015;9:3867–76. https://doi.org/10.2147/DDDT.S75702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mabrouk AA., Tadros MI.,Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: insights into the implementation of nanotechnology and mucoadhesion. J Drug Del. Sci. Technol. 2021;61:Article number 102240.

  49. Mitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev. 2004;56(5):589–601. https://doi.org/10.1016/j.addr.2003.10.024.

    Article  CAS  PubMed  Google Scholar 

  50. Mitragotri S, Ray D, Farrell J, Tang H, Yu B, Kost J, et al. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. J Pharm Sci. 2000;89(7):892–900. https://doi.org/10.1002/1520-6017(200007)89:7%3c892::AID-JPS6%3e3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Mina Ibrahim Tadros.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, M.A., Mohamed, M.I., Tadros, M.I. et al. Low-Frequency Sonophoresis as an Active Approach to Potentiate the Transdermal Delivery of Agomelatine-Loaded Novasomes: Design, Optimization, and Pharmacokinetic Profiling in Rabbits. AAPS PharmSciTech 22, 261 (2021). https://doi.org/10.1208/s12249-021-02147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02147-y

Keywords

Navigation