Skip to main content

Advertisement

Log in

Fabrication and Evaluation of Transdermal Delivery of Carbamazepine Dissolving Microneedles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This project aims to prepare hydrogel microneedle patches (MNs) as a painless method to deliver carbamazepine transdermally. This can be used as a sustained release system that offers the advantages of lower gastrointestinal side effects and avoids the first-pass metabolism of the drug. MNs were composed of two medicated layers, a microneedle layer and a base layer. MNs were fabricated using polyvinyl alcohol with or without polyvinylpyrrolidone Kollidon 30 as a matrix polymer and in the presence of selected solubilizing agent (polyethylene glycol 400, Tween 80, or α-tocopherol polyethylene glycol). Freezing–thawing cycle was evaluated as one of the processing parameters that may affect the drug release. The MNs were evaluated for their weight variation, base thickness, and content uniformity. The physicochemical compatibility between carbamazepine and the polymers was estimated by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray powder diffraction. Evaluation for the in vitro release studies and ex vivo permeation studies was performed. The prepared MNs were flexible, clear, and uniform in weight, base thickness, and drug content. Physicochemical characterizations showed that carbamazepine was amorphous in most of the MNs. In vitro release and ex vivo permeation studies of carbamazepine were significantly higher for MNs containing a combination of 1:1 w/w of PEG 400 and Tween 80 as solubilizing agents where the release was extended over 96 h, with the release of 85.2% and 59.6% permeation percentage compared to other MNs. A significant effect of the freezing–thawing cycle on the release profile of the drug was observed. The hydrogel MNs are shown to be stable under the studied storage conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASD:

Anti-seizure drug

CBZ:

Carbamazepine

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

MNs:

Microneedles

PEG:

400 Polyethylene glycol 400

PVA:

Polyvinyl alcohol

PVP K30:

Polyvinylpyrrolidone Kollidon 30

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analysis

α-TPGS:

α-Tocopherol polyethylene glycol of vitamin E

XRPD:

X-ray powder diffraction

References

  1. Kale SN, Kitture R, Ghosh S, Chopade BA, Yakhmi JV. Nanomaterials as enhanced antimicrobial agent/activity-enhancer for transdermal applications: a review, 2017. Antimicrobial Nanoarchitectonics, 279–321.

  2. Abhinay C, Biplab KD. An overview on transdermal drug delivery. Indo American Journal of Pharmaceutical Research. 2016;6(07):6073–91.

    Google Scholar 

  3. Rastogi V, Yadav P. Transdermal drug delivery system: an overview. Asian Journal of Pharmaceutics. 2012;6:161–70.

    Article  Google Scholar 

  4. Kanabar VB, Patel VP, Doshi SM. Formulation and evaluation of transdermal patch of Cefdinir with various polymers. The Pharma Innovation Journal. 2015;4(6):74–7.

    Google Scholar 

  5. Urquhart J; Chandrasekaran SK; Shaw JE. Method for administration scopolamine transdermally. 1983, US11/443, 6741.

  6. Fischer W, Huber P. Transdermal systems for the delivery of clonidine. 2003, US 2004/0028726 A1.

  7. Hwang SS, Gale RM. Once-A-Day replacement transdermal administration of fentanyl. 2008, US 2009/0258061 A1.

  8. Chiang CC. Transdermal delivery of oxybutynin in gel formulations. 2004, US 2005/0064037 A1.

  9. Ebert CD, Patel D, Heiber S. Method and systems for administering nitroglycern transdermally at enhanced transdermal fluxes. 1990, US 005202125 A.

  10. Ciullo J. Lidocaine patch and methods of use. 2012, US 2013/ 0184351 A1.

  11. Mantelle J. A. Transdermal testosterone device and delivery. 2010, US 009,320,742 B2.

  12. Lúcia FS, Ilídio JC, Sofia S, João FM. Biomaterials for drug delivery patches. Eur J Pharm Sci. 2018;118:49–66.

    Article  Google Scholar 

  13. Harneet M, Tarun G, Amit KG, Goutam R. Permeation enhancer strategies in transdermal drug delivery. 2014.

  14. Santos LF, Correia IJ, Silva AS, Mano JF. Biomaterials for drug delivery patches. Eur J Pharm Sci. 2018;118:49–66.

    Article  CAS  PubMed  Google Scholar 

  15. Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, Kole PL, Mahmood TMT, McCarthy HO, Woolfson AD. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Journal of advance functional materials. 2012;22:1–12.

    Google Scholar 

  16. Lee IC, He JS, Tsai MT, Lin KC. Fabrication of a novel partial dissolving polymer microneedle patch for transdermal drug delivery. Journal of material chemistry B. 2013;2013:1–29.

    Google Scholar 

  17. Kearney MC, Salvador EC, Fallows SJ, McCarthy HO, Donnelly RF. Microneedle-mediated delivery of donepezil: potential for improved treatment options in alzheimer’s disease. Eur J Pharm Biopharm. 2016;43–50:103.

    Google Scholar 

  18. Migdadi EM, Courtenay AJ, Tekko IA, McCrudden MTC, Kearney MC, McAlister E, McCarthy HO, Donnelly RF. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release. 2018;285:142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beydoun A, DuPont S, Zhou D, Matta M, Nagire V, Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure. 2020;83:251–63.

    Article  PubMed  Google Scholar 

  20. Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine. Clinical Pharmacokinetic. 1996;3:198–214.

    Article  Google Scholar 

  21. Jongmans JWM. Report on the anti-epileptic action of Tegretol. Epilipsia. 1964;5:74–82.

    Article  CAS  Google Scholar 

  22. Biom S. Trigeminal neuralgia: its treatment with a new anticonvulsant drug (G-32883). Lancet. 1962;1:839–40.

    Google Scholar 

  23. Alrashood ST. Carbamazepine. Profiles Drug Subst Excip Relat Methodol. 2016;41:133–321.

    Article  CAS  PubMed  Google Scholar 

  24. McIntyre RS, Berk M, Brietzke E, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–56.

    Article  CAS  PubMed  Google Scholar 

  25. Kanner AM. Management of psychiatric and neurological comorbidities in epilepsy. Nat Rev Neurol. 2016;12(2):106–16.

    Article  CAS  PubMed  Google Scholar 

  26. Castro APBM, Redmershi MG, Pastorino AC, Paz JA, Fomin ABF, Jacob CMA. Secondary hypogammaglobilinemia after use of Carbamazepine: case report and review. Revista do Hospital das Clínicas. 2001;56(6):189–92.

    Article  CAS  PubMed  Google Scholar 

  27. Omoúlu T, Nurßin GNL. Quality control studies on conventional Carbamazepine tablets available on the Turkish drug market. Turk J Med Sci. 2005;35:217–21.

    Google Scholar 

  28. Cruccu G, Di Stefano G, Truini A. Trigeminal Neuralgia. N Engl J Med. 2020;383(8):754–62.

    Article  PubMed  Google Scholar 

  29. Isadiartuti D, Budiati T, Martodihardjo S. Solubility and dissolution study of physical mixture of carbamazepine and amino acids. Int J Pharm Pharm Sci. 2013;6(1):301–6.

    Google Scholar 

  30. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system the central role of dose/solubility ratio. Pharm Res. 2003;20:1917–25.

    Article  CAS  PubMed  Google Scholar 

  31. Drugbank.ca. (2020). Carbamazepine-DrugBank. [online] Available at: https://www.drugbank.ca/drugs/DB00564 [Accessed 3 Jan. 2020].

  32. Yang S, Feng Y, Zhang L, Chen N, Yuan W, Jin T. A scalable fabrication process of polymer Microneedles. Int J Nanomed. 2012;7:1415–22.

    CAS  Google Scholar 

  33. Tejwani RW, Joshi H, Varia SA, Serajuddin A. Study of phase behavior of poly (ethylene glycol)-polysorbate 80 and poly(ethylene glycol) –polysorbate 80- water mixtures. J Pharm Sci. 2000;89(7):946–50.

    Article  CAS  PubMed  Google Scholar 

  34. Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Journal of Europe of pharmaceutical science. 2017;15(104):114–23.

    Article  Google Scholar 

  35. Luthala S. Effect of sodium lauryl sulfate and polysorbate 80 on crystal growth and aqueous solubility of carbamazepine. Acta Pharm Nord. 1992;4(2):85–90.

    Google Scholar 

  36. Hyeongmin K, Sukkyun J, Sooho Y, Dohyun K, Young CN, Gyiae Y, Jaehwi L. Characteristics of skin deposition of itraconazole solubilized in cream formulation. Pharmaceutics. 2019;11:195.

    Article  Google Scholar 

  37. Valentine CA, Ibbotson GATN, Akroyd DT, Kendrick JS, V. Sunesen H. Comparison of procedures used to separate the different layers of human skin biopsy samples. Covance Laboratories Ltd, 2016.

  38. Czernicki W, Baranska M. Carbamazepine polymorphs: theoretical and experimental vibrational spectroscopy studies. Vib Spectrosc. 2012;65:12–23.

    Article  Google Scholar 

  39. Pinto MAL., Ambrozini B, Ferreira APG, and Cavalheiro ΈTG. Thermoanalytical studies of carbamazepine: hydration/ dehydration, thermal decomposition, and solid phase transitions. Brazilian Journal of Pharmaceutical sciences, 2014, 50 (4), 877–884.

  40. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  PubMed  Google Scholar 

  41. Nair R, Kumar ACK, Priya VK, Yadav CM, Raju PY. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis. 2012;11:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elqidra R, Ünlü N, Çapan Y, Sahin G, Dalkara T, Hincal AA. Effect of polymorphism on in vitro-in vivo properties of carbamazepine conventional tablets. Journal of drug delivery and science technology. 2004;14(2):147–53.

    Article  CAS  Google Scholar 

  43. Douroumis D, Bouropoulos N, Fahr A. Physiochemical characterization of solid dispersions of three antiepileptic drugs prepared by solvent evaporation method. Journal of Pharmacy and Pharmacology (JPP). 2007;59:645–53.

    Article  CAS  Google Scholar 

  44. Ma X, Müller F, Huang S, Lowinger M, Liu X, Schooler R, Williams RO III. Influence of carbamazepine dihydrate on the preparation of amorphous solid dispersion by hot melt extrusion. Pharmaceutics. 2020;12:379.

    Article  CAS  PubMed Central  Google Scholar 

  45. Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. Journal of pharmacy and Bioallied sciences. 2012;4(1):2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rodrigues LNC, Zanluchi JM, Grebogi IH. Percutaneous absorption enhancers: mechanisms and potential. Braz Arch Biol Technol. 2007;50(6):949–61.

    Article  Google Scholar 

  47. Lane ME. Skin Penetration enhancers. Int J Pharm. 2013;447:12–21.

    Article  CAS  PubMed  Google Scholar 

  48. Shlichta PJ, Knox RE. Growth of crystals by centrifugation. J Cryst Growth. 1968;3(4):808–13.

    Article  Google Scholar 

  49. Chaudhari S, Dugar R. Application of surfactants in solid dispersion technology for improving solubility of poorly water-soluble drugs. Journal of drug delivery science and technology. 2017;41:68–77.

    Article  CAS  Google Scholar 

  50. Gouda R, Baishya H, Qing Z. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. Journal of development drugs. 2017;6(2):1–8.

    Google Scholar 

  51. Nair R, Gonen S, Hoag SW. Influence of polyethylene glycol and povidone on the polymorphic transformation and solubility of carbamazepine. Int J Pharm. 2002;240:11–22.

    Article  CAS  PubMed  Google Scholar 

  52. Tang C, Saquing CD, Harding JR, Khan SA. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules. 2010;43:630–7.

    Article  CAS  Google Scholar 

  53. Marsac PJ, Rumondor ACF, Nivens DE, Kestur US, Stanciu L, Taylor LS. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly (vinyl pyrrolidone). J Pharm Sci. 2010;99(1):169–85.

    Article  CAS  PubMed  Google Scholar 

  54. Cao Y, Tao Y, Zhou Y, Gui S. Development of sinomenine hydrochloride loaded polyvinylalcohol/maltose microneedle for transdermal delivery. Journal of Drug Delivery Science and Technology. 2016;35:1–7.

    Article  CAS  Google Scholar 

Download references

Funding

For Deanship of Research at Jordan University of Science and Technology for funding this project with Fund number 517/2020.

Author information

Authors and Affiliations

Authors

Contributions

Rana Obaidat: contributed to the conception, design, and interpretation. Fatima BaniAmer: performed the research in the lab, data analysis, and writing it as part of her master’s degree thesis. Shereen Assaf: contributed to design, characterization of the patches, and writing. Ahmed Yassin: contributed to the conception, design, and writing.

Corresponding author

Correspondence to Rana Obaidat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidat, R., BaniAmer, F., Assaf, S.M. et al. Fabrication and Evaluation of Transdermal Delivery of Carbamazepine Dissolving Microneedles. AAPS PharmSciTech 22, 253 (2021). https://doi.org/10.1208/s12249-021-02136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02136-1

KEY WORDS

Navigation