Skip to main content
Log in

Cliv-92-Loaded Glycyrrhetinic Acid-Modified Chitosan Nanoparticles for Enhanced Hepatoprotection–Preparation, Characterization, and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cliv-92 is a mixture of three structurally similar coumarinolignoids and a proven hepatoprotective agent. Low aqueous solubility and poor bioavailability are notable hindrances for its further use. Therefore, glycyrrhetinic acid-linked chitosan nanoparticles loaded with Cliv-92 were prepared for active targeting to the liver. The nanoparticles were prepared by the ionic gelation method to avoid the use of toxic solvents/rigorous agitation. The method of preparation was optimized using a central composite design with independent variables, namely polymer: drug ratio (3:1, w/w), crosslinker concentration (0.5%), and stirring speed (750 rpm). The optimized nanoparticles had a mean particle size of 185.17 nm, a polydispersity index of 0.41, a zeta potential of 30.93 mV, and a drug loading of 16.30%. The prepared formulation showed sustained release of approximately 63% of loaded Cliv-92 over 72 h. The nanoparticles were freeze-dried for long-term storage and further characterized. The formulation was found to be biocompatible for parenteral delivery. In vivo imaging study showed that optimized nanoparticles were preferentially accumulated in the liver and successfully targeting the liver. The present study successfully demonstrated the improved pharmacokinetic properties (≈12% relative bioavailability) and efficacy profile (evidenced by in vivo and histopathological studies) of fabricated Cliv-92 nanoparticles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALB:

Albumin

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BIL:

Total bilirubin

CAT:

Catalase

CDCl3 :

Chloroform-d

CH3COOD:

Acetic (acid-d)

CNP:

Cliv-92 nanoparticles

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on Animals

CTS:

Chitosan

DPX:

Dibutylphthalate polystyrene xylene

DSC:

Differential scanning calorimetry

EDC·HCl:

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

FTIR:

Fourier transform infrared

GA:

Glycyrrhetinic acid

GA-CTS complex:

Glycyrrhetinic acid-modified chitosan

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GST:

Glutathione S-transferase

H&E:

Hematoxylin and eosin

ICG:

Indocyanine green

ICMR:

Indian Council of Medical Research

IL:

Interleukin

KBr:

Potassium bromide

LDH:

Lactate dehydrogenase

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NDDS:

Novel drug delivery systems

NHS:

N-hydroxysuccinimide

NMR:

Nuclear magnetic resonance

PBS:

Phosphate-buffered saline

RT:

Room temperature

SOD:

Superoxide dismutase

TNF-α :

Tumor necrosis factor-α

TP:

Total proteins

TPP:

Sodium tripolyphosphate

UV–Vis:

Ultraviolet–visible

References

  1. Elmotasem H, Farag HK, Salama AAA. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula – Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. Int J Pharm. 2018;547(1):83–96. https://doi.org/10.1016/j.ijpharm.2018.05.038.

    Article  CAS  PubMed  Google Scholar 

  2. Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A, Chanda J, et al. Development of Ayurveda - tradition to trend. J Ethnopharmacol. 2017;197:10–24. https://doi.org/10.1016/j.jep.2016.09.024.

    Article  PubMed  Google Scholar 

  3. Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010;4(7):27–31.

    Article  Google Scholar 

  4. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–9. https://doi.org/10.1016/j.fitote.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  5. Shi L, Tang C, Yin C. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials. 2012;33(30):7594–604. https://doi.org/10.1016/j.biomaterials.2012.06.072.

    Article  CAS  PubMed  Google Scholar 

  6. Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27(9):2051–9. https://doi.org/10.1016/j.biomaterials.2005.10.027.

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Zhao X, Hu H, Chen D, Gu J, Deng Y, et al. Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug Delivery. 2010;17(3):114–22. https://doi.org/10.3109/10717540903580176.

    Article  CAS  PubMed  Google Scholar 

  8. Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine. 2012;8(7):1172–81. https://doi.org/10.1016/j.nano.2012.01.009.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wei P, Li J, Li L. Pharmacokinetic analysis and optimization of hydroxycamptothecin-loaded nanoparticles for liver targeting. Drug Dev Ind Pharm. 2012;38(7):837–47. https://doi.org/10.3109/03639045.2011.630393.

    Article  CAS  PubMed  Google Scholar 

  10. Sun X, Wu F, Lu W, Zhang ZR. Sustained-release hydroxycamptothecin polybutylcyanoacrylate nanoparticles as a liver targeting drug delivery system. Pharmazie. 2004;59(10):791–4.

    CAS  PubMed  Google Scholar 

  11. Stavros NP, Colombo P, Colombo G, Dimitrios MR. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889–901. https://doi.org/10.1080/03639045.2017.1291672.

    Article  CAS  Google Scholar 

  12. Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011;8(10):1341–60. https://doi.org/10.1517/17425247.2011.605120.

    Article  CAS  PubMed  Google Scholar 

  13. Tandon S, Chatterjee A, Chattopadhyay SK, Kaur R, Gupta AK. Pilot scale processing technology for extraction of Cliv-92: a combination of three coumarinolignoids cleomiscosins A, B and C from Cleome viscosa. Ind Crops Prod. 2010;31(2):335–43. https://doi.org/10.1016/j.indcrop.2009.11.014.

    Article  CAS  Google Scholar 

  14. Yadav NP, Chanda D, Chattopadhyay SK, Gupta AK, Pal A. Hepatoprotective effects and safety evaluation of coumarinolignoids isolated from Cleome viscosa seeds. Indian J Pharm Sci. 2010;72(6):759–65. https://doi.org/10.4103/0250-474x.84589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai Y, Xu Y, Chan HF, Fang X, He C, Chen M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm. 2016;13(3):699–709. https://doi.org/10.1021/acs.molpharmaceut.5b00677.

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Li M, Wan T, Zheng Q, Cheng M, Huang S, et al. Design and synthesis of dual-ligand modified chitosan as a liver targeting vector. J Mater Sci. 2012;23(2):431–41. https://doi.org/10.1007/s10856-011-4494-1.

    Article  CAS  Google Scholar 

  17. Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–7. https://doi.org/10.1002/pi.5970.

    Article  CAS  Google Scholar 

  18. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B. 2012;90:21–7. https://doi.org/10.1016/j.colsurfb.2011.09.042.

    Article  CAS  Google Scholar 

  19. Rai VK, Yadav NP, Sinha P, Mishra N, Luqman S, Dwivedi H, et al. Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery. Carbohyd Polym. 2014;103:126–33. https://doi.org/10.1016/j.carbpol.2013.12.019.

    Article  CAS  Google Scholar 

  20. Sun Y, Liu J, Kennedy JF. Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design. Carbohyd Polym. 2010;80(3):949–53. https://doi.org/10.1016/j.carbpol.2010.01.011.

    Article  CAS  Google Scholar 

  21. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J Drug Deliv Sci Tec. 2019;49:420–32. https://doi.org/10.1016/j.jddst.2018.12.013.

  22. Sinha P, Ubaidulla U, Nayak AK. Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. Int J Biol Macromol. 2015;72:1069–75. https://doi.org/10.1016/j.ijbiomac.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  23. Robert S, Baccelli C, Devel P, Dogné J-M, Quetin-Leclercq J. Effects of leaf extracts from Croton zambesicus Müell. Arg on hemostasis Journal of ethnopharmacology. 2010;128(3):641–8. https://doi.org/10.1016/j.jep.2010.02.007.

    Article  PubMed  Google Scholar 

  24. Yukawa H, Watanabe M, Kaji N, Okamoto Y, Tokeshi M, Miyamoto Y, et al. Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials. 2012;33(7):2177–86. https://doi.org/10.1016/j.biomaterials.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  25. Yadav K, Ranjana, Tandon S, Yadav N, Shanker K. Pharmacokinetic study of hepatoprotective coumarinolignoids from Cleome viscosa in mice using validated high-performance liquid chromatography-photodiode array method. Pharmacogn Mag. 2019;15(61):270–6. https://doi.org/10.4103/pm.pm_508_18.

    Article  CAS  Google Scholar 

  26. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.

    Article  PubMed  Google Scholar 

  27. Wang MT, Jin Y, Yang YX, Zhao CY, Yang HY, Xu XF, et al. In vivo biodistribution, anti-inflammatory, and hepatoprotective effects of liver targeting dexamethasone acetate loaded nanostructured lipid carrier system. Int J Nanomed. 2010;5:487–97.

    CAS  Google Scholar 

  28. Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, et al. Improving<i> in vivo</i> efficacy of bioactive molecules: an overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J Oncol. 2017;2017:7351976. https://doi.org/10.1155/2017/7351976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng M, Gao X, Wang Y, Chen H, He B, Xu H, et al. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs. 2013;11(9):3517–36.

    Article  CAS  Google Scholar 

  30. Honary S, Ebrahimi P, Hadianamrei R. Optimization of size and encapsulation efficiency of 5-FU loaded chitosan nanoparticles by response surface methodology. Curr Drug Deliv. 2013;10(6):742–52.

    Article  CAS  Google Scholar 

  31. Patel BK, Parikh RH, Aboti PS. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J Drug Deliv. 2013;2013:10. https://doi.org/10.1155/2013/370938.

    Article  CAS  Google Scholar 

  32. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–93.

    PubMed  PubMed Central  Google Scholar 

  33. Coates J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry (eds R.A. Meyers and M.L. McKelvy): Wiley; 2006. https://doi.org/10.1002/9780470027318.a5606.

  34. Ray AB, Chattopadhyay SK, Konno C, Hikino H. Structure of cleomiscosin a, a coumarino-lignoid of Cleome viscosa seeds. Tetrahedron Lett. 1980;21(46):4477–80. https://doi.org/10.1016/S0040-4039(00)92205-6.

    Article  CAS  Google Scholar 

  35. Ray AB, Chattopadhyay SK, Kumar S, Konno C, Kiso Y, Hikino H. Structures of cleomiscosins, coumarinolignoids of Cleome viscosa seeds. Tetrahedron. 1985;41(1):209–14. https://doi.org/10.1016/S0040-4020(01)83488-8.

    Article  CAS  Google Scholar 

  36. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    CAS  PubMed  Google Scholar 

  37. Balan V, Verestiuc L. Strategies to improve chitosan hemocompatibility: a review. Eur Polymer J. 2014;53:171–88. https://doi.org/10.1016/j.eurpolymj.2014.01.033.

    Article  CAS  Google Scholar 

  38. Mishra N, Yadav NP, Rai VK, Sinha P, Yadav KS, Jain S, et al. Efficient hepatic delivery of drugs: novel strategies and their significance. BioMed Res Int. 2013;2013:382184. https://doi.org/10.1155/2013/382184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang W, Jiang L, Ren Y, Shen M, Xie J. Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. Int J Biol Macromol. 2019;124:788–95. https://doi.org/10.1016/j.ijbiomac.2018.11.260.

    Article  CAS  PubMed  Google Scholar 

  40. Aayadi H, Mittal SPK, Deshpande A, Gore M, Ghaskadbi SS. Protective effect of geraniin against carbon tetrachloride induced acute hepatotoxicity in Swiss albino mice. Biochem Biophys Res Commun. 2017;487(1):62–7. https://doi.org/10.1016/j.bbrc.2017.04.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KSY is thankful to the Indian Council of Medical Research, New Delhi, for awarding Senior Research Fellowship. The authors are grateful to the CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow for providing necessary facilities. The authors would like to acknowledge the support of the Malaviya National Institute of Technology, Jaipur for the TEM analysis, and the Indian Institute of Technology, Kanpur for the DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Prasad Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K.S., Srivastava, N., Rai, V.K. et al. Cliv-92-Loaded Glycyrrhetinic Acid-Modified Chitosan Nanoparticles for Enhanced Hepatoprotection–Preparation, Characterization, and In Vivo Evaluation. AAPS PharmSciTech 22, 259 (2021). https://doi.org/10.1208/s12249-021-02130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02130-7

KEY WORDS

Navigation