Skip to main content
Log in

Improvement of Bleached Shellac as Enteric Coating by Composite Formation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to stabilize the enteric property of bleached shellac by composite formation with ethyl cellulose. The composite film at the ratio of 9:1, 8:2, 7:3, 6:4, and 5:5 was prepared by the film casting method. The physicochemical properties were acid value, insoluble solid, water permeability coefficient, % polarity, mechanical property, FTIR, PXRD, DSC, % solubility in aqueous, and various pH (1.2 and 7.4). All the films were able to protect against the low pH and water. The total solubility at pH 7.4 was reported for the low ratio of ethyl cellulose (9:1 and 8:2). The stability of all films was then investigated for 180 days. The results demonstrated that the ethyl cellulose could stabilize the bleached shellac indicated by the low changes in acid value and insoluble solid. The higher ratio of ethyl cellulose contributed to the lower polymerization during storage. The results were due to the protection of the bleached shellac’s active sites. The entanglement of ethyl cellulose caused interaction difficulties between active groups leading to stabilized bleached shellac. The proper ratio was 7:3 because of high solubility, and low polymerization. The findings demonstrated that the composite film could improve the enteric property of bleached shellac for a long period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagenmaier RD, Baker RA. Reduction in gas exchange of citrus fruit by wax coatings. J Agri Food Chem. 1993;41(2):283–7.

    Article  CAS  Google Scholar 

  2. McGuire RG, Hagenmaier RD. Shellac coatings for grapefruits that favor biological control of Penicillium digitatum by Candida oleophila. Bio Control. 1996;7(1):100–6.

    Article  Google Scholar 

  3. Valencia-Chamorro SA, Pérez-Gago MB, Del Río MA, Palou L. Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored “Ortanique” mandarins. J Food Sci. 2010;75(8):S418-426.

    Article  CAS  PubMed  Google Scholar 

  4. Phan The D, Debeaufort F, Luu D, Voilley A. Moisture barrier, wetting and mechanical properties of shellac/agar or shellac/cassava starch bilayer bio-membrane for food applications. J Membr Sci. 2008;325(1):277–83.

    Article  Google Scholar 

  5. Stummer S, Salar-Behzadi S, Unger FM, Oelzant S, Penning M, Viernstein H. Application of shellac for the development of probiotic formulations. Food Res Int. 2010;43(5):1312–20.

    Article  CAS  Google Scholar 

  6. Soradech S, Nunthanid J, Limmatvapirat S, Luangtana-anan M. Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control. 2017;73:1310–7.

    Article  CAS  Google Scholar 

  7. Limmatvapirat S, Limmatvapirat C, Luangtana-anan M, Nunthanid J, Oguchi T, Tozuka Y, Yamamoto K, Puttipipatkhachorn S. Modification of physicochemical and mechanical properties of shellac by partial hydrolysis. Int J Pharm. 2004;278(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pearnchob N, Dashevsky A, Bodmeier R. Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid. J Control Release. 2004;94(2–3):313–21.

    Article  CAS  PubMed  Google Scholar 

  9. Hagenmaier RD, Shaw PE. Permeability of shellac coatings to gases and water vapor. J Agri Food Chem. 1991;39(5):825–9.

    Article  CAS  Google Scholar 

  10. Limmatvapirat S, Nunthanid J, Puttipipatkhachorn S, Luangtana-anan M. Effect of alkali treatment on properties of native shellac and stability of hydrolyzed shellac. Pharm Dev Technol. 2005;10(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  11. Luangtana-anan M, Limmatvapirat S, Nunthanid J, Wanawongthai C, Chalongsuk R, Puttipipatkhachorn S. Effect of salts and plasticizers on stability of shellac film. J Agric Food Chem. 2007;55(3):687–92.

    Article  CAS  PubMed  Google Scholar 

  12. Luangtana-anan M, Nunthanid J, Limmatvapirat S. Effect of molecular weight and concentration of polyethylene Glycol on physicochemical properties and stability of shellac film. J Agric Food Chem. 2010;58(24):12934–40.

    Article  CAS  PubMed  Google Scholar 

  13. Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M. Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm. 2007;67(3):690–8.

    Article  CAS  PubMed  Google Scholar 

  14. Soradech S, Limatvapirat S, Luangtana-anan M. Stability enhancement of shellac by formation of composite film: effect of gelatin and plasticizers. J Food Eng. 2013;116(2):572–80.

    Article  CAS  Google Scholar 

  15. Soradech S, Nunthanid J, Limmatvapirat S, Luangtana-anan M. An approach for the enhancement of the mechanical properties and film coating efficiency of shellac by the formation of composite films based on shellac and gelatin. J Food Eng. 2012;108(1):94–102.

    Article  CAS  Google Scholar 

  16. Phaechamud T, Mahadlek J, Chuenbarn T. In situ forming gel comprising bleached shellac loaded with antimicrobial drugs for periodontitis treatment. Mater Des. 2016;89:294–303.

    Article  CAS  Google Scholar 

  17. Phaechamud T, Setthajindalert O. Antimicrobial in-situ forming gels based on bleached shellac and different solvents. J Drug Deliv Sci Technol. 2018;46:285–93.

    Article  CAS  Google Scholar 

  18. Saengsod S, Limmatvapirat S, Luangtana-anan M. Optimum condition of conventional bleaching process for bleached shellac. J Food Process Eng. 2019;42(8):e13291.

    Article  Google Scholar 

  19. Luce GT. Disintegration of tablets enteric coated with CAP. J Pharm Technol. 1978;2:51–5.

    Google Scholar 

  20. Wu S. Polymer interface and adhesion. New York: Marcel Dekker Inc; 1982.

    Google Scholar 

  21. Soradech S, Nunthanid J, Sriamornsak P, Limmatvapirat S, Luangtana-anan M. Factors affecting on the enhancement of mechanical properties of composite edible film based on shellac and gelatin. Thai J Agric Sci. 2011;44(5):263–9.

    Google Scholar 

  22. Pearnchob N, Dashevsky A, Bodmeier R. Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid. J Control Release. 2004;94(2):313–21.

    Article  CAS  PubMed  Google Scholar 

  23. Qussi B, Suess WG. The Influence of different plasticizers and polymers on the mechanical and thermal properties, porosity and drug permeability of free shellac films. Drug Dev Ind Pharm. 2006;32(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  24. Ma X, Liu Y, Fan L, Yan W. Ethyl cellulose particles loaded with α-tocopherol for inhibiting thermal oxidation of soybean oil. Carbohydr Polym. 2021;252:117169.

    Article  CAS  PubMed  Google Scholar 

  25. Goswami DN, Saha SK. An investigation of the melting properties of different forms of lac by differential scanning calorimeter. JOCCA Surf Coat Int. 2000;83(7):334–6.

    Article  CAS  Google Scholar 

  26. Davidovich-Pinhas M, Co ED, Barbut S, Marangoni AG. Physical structure and thermal behavior of ethylcellulose. Cellulose. 2015;22(3):2137–2137.

    Article  CAS  Google Scholar 

  27. Kasten G, Nouri K, Grohganz H, Rades T, Löbmann K. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. Int J Pharm. 2017;533(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  28. Heredia-Guerrero JA, Ceseracciu L, Guzman-Puyol S, Paul UC, Alfaro-Pulido A, Grande C, Vezzulli L, Bandiera T, Bertorelli R, Russo D, Athanassiou A, Bayer IS. Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydr Polym. 2018;192:150–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci. 2018;115:11–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ravella VN, Nadendla RR, Kesari NC. Design and evaluation of sustained release pellets of aceclofenac. J Pharm Res. 2013;6(5):525–31.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Research and Development Institute of Silpakorn University and Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manee Luangtana-anan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luangtana-anan, M., Saengsod, S. & Limmatvapirat, S. Improvement of Bleached Shellac as Enteric Coating by Composite Formation. AAPS PharmSciTech 22, 241 (2021). https://doi.org/10.1208/s12249-021-02127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02127-2

KEY WORDS

Navigation