Skip to main content
Log in

Solvent-Assisted Hot Melt Extrusion of a Thermally Labile, High Melting Point Compound

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Molecular dispersions are a highly effective method of increasing bioavailability for a poorly soluble active pharmaceutical ingredient (API) and can be prepared on a large scale by hot melt extrusion (HME). Processing thermally labile active pharmaceutical ingredients (APIs) via HME is generally more difficult, with operating temperatures limited to below that of the API melting point. API melting is considered essential to facilitate the formation of a fully homogeneous amorphous system. Processing below the melting point renders the system much more susceptible to residual crystalline content; hence, HME is not suitable for APIs which degrade upon melting. In the following work, meloxicam (MEL) was used as a model API, possessing properties of high melting temperature and thermal lability. In this proof of concept work, a modified HME method, termed solvent-assisted HME, was used to overcome this issue and prepare an amorphous solid dispersion using HME, wherein a solvent was incorporated in the formulation blend during extrusion and removed post-processing. Formulations containing 10%wt meloxicam (MEL) and 90%wt polyvinylpyrrolidone vinyl acetate (PVPVA) copolymer were extruded using a twin-screw extruder at temperatures below the melting point of MEL. Dimethylformamide (DMF) solvent was added directly into the extruder barrel through a liquid addition port, resulting in extrudate products having a higher conversion of API to the amorphous form. The incorporation of solvent allowed a significant reduction in processing temperatures due to its increased mobility, while also driving the conversion of the API to its amorphous form. The solvent was successfully reduced through a secondary drying step using a vacuum oven. This advancement has demonstrated the potential for thermally labile APIs to be processed via HME expanding the applications of this technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zografi G, Newman A. Introduction to amorphous solid dispersions. In: Newman A, editor. Pharmaceutical amorphous solid dispersions. New Jersey: Wiley; 2015. p. 1–42.

    Google Scholar 

  2. Xie T, Gao W, Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531(1):313–23. https://doi.org/10.1016/j.ijpharm.2017.08.099.

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8. https://doi.org/10.1023/A:1018906132279.

    Article  CAS  PubMed  Google Scholar 

  4. Kaushal AM, Gupta P, Bansal AK. Amorphous drug delivery systems: molecular aspects, design, and performance. Crit Rev Ther Drug Carrier Syst. 2004;21(3):133–93. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i3.10.

    Article  CAS  PubMed  Google Scholar 

  5. Newman A, Nagapudi K, Wenslow R. Amorphous solid dispersions: a robust platform to address bioavailability challenges. Ther Deliv. 2015;6(2):247–61. https://doi.org/10.4155/tde.14.101.

    Article  CAS  PubMed  Google Scholar 

  6. Coates PD, Barnes SE, Sibley MG, Brown EC, Edwards HGM, Scowen IJ. In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer (Guildf). 2003;44(19):5937–49. https://doi.org/10.1016/S0032-3861(03)00544-5.

    Article  CAS  Google Scholar 

  7. Maniruzzaman M, Nokhodchi A. Continuous manufacturing via hot-melt extrusion and scale up: regulatory matters. Drug Discov Today. 2017;22(2):340–51. https://doi.org/10.1016/j.drudis.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Nežić I, Sander A, Meštrović E, Čavužić D. Production of stable amorphous form by means of spray drying. Part Sci Technol. 2019;37(5):628–38. https://doi.org/10.1080/02726351.2017.1417936.

    Article  CAS  Google Scholar 

  9. Kelleher JF, Gilvary GC, Madi AM, Jones DS, Li S, Tian Y, et al. A comparative study between hot-melt extrusion and spray-drying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products. Int J Pharm. 2018;545(1–2):183–96. https://doi.org/10.1016/j.ijpharm.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  10. O’Neill MJ. Meloxicam. In: Co. M and, editor. The Merck Index - an Encyclopedia of chemicals, drugs, and biologicals. New Jersey: Whitehouse Station; 2006. p. 1006.

  11. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011;100(6):2172–81. https://doi.org/10.1002/jps.22434.

    Article  CAS  PubMed  Google Scholar 

  12. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Supramolecular architectures of meloxicam carboxylic acid cocrystals, a crystal engineering case study. Cryst Growth Des. 2010;10(10):4401–13. https://doi.org/10.1021/cg100514g.

    Article  CAS  Google Scholar 

  13. Weyna DR, Cheney ML, Shan N, Hanna M, Zaworotko MJ, Sava V, et al. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm. 2012;9(7):2094–102. https://doi.org/10.1021/mp300169c.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki H, Yakushiji K, Matsunaga S, Yamauchi Y, Seto Y, Sato H, et al. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J Pharm Sci. 2017;107(1):446–52. https://doi.org/10.1016/j.xphs.2017.05.023.

    Article  CAS  PubMed  Google Scholar 

  15. Haser A, Cao T, Lubach JW, Zhang F. In situ salt formation during melt extrusion for improved chemical stability and dissolution performance of a meloxicam-copovidone amorphous solid dispersion. Mol Pharm. 2018;15(3):1226–37. https://doi.org/10.1021/acs.molpharmaceut.7b01057.

    Article  CAS  PubMed  Google Scholar 

  16. Bhende S, Jadhav N. Moringa coagulant as a stabilizer for amorphous solids: part I. AAPS PharmSciTech. 2012;13(2):400–10. https://doi.org/10.1208/s12249-012-9755-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang S. Application of hot-melt extrusion in the manufacturing of amorphous solid dispersions containing thermally labile drugs. University of Texas at Austin; 2017. https://repositories.lib.utexas.edu/handle/2152/47149. Accessed 24 Aug 2021

  18. HengsawasSurasarang S, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2017;43(5):797–811. https://doi.org/10.1080/03639045.2016.1220577.

    Article  CAS  Google Scholar 

  19. Seedher N, Bhatia S. Solubility enhancement of cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4(3):36–44. https://doi.org/10.1208/pt040333.

    Article  PubMed Central  Google Scholar 

  20. Haser A, Huang S, Listro T, White D, Zhang F. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017;524(1–2):55–64. https://doi.org/10.1016/j.ijpharm.2017.03.070.

    Article  CAS  PubMed  Google Scholar 

  21. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26. https://doi.org/10.1007/s11095-006-9063-9.

    Article  CAS  PubMed  Google Scholar 

  22. Moseson DE, Taylor LS. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm. 2018;553(1–2):454–66. https://doi.org/10.1016/j.ijpharm.2018.10.055.

    Article  CAS  PubMed  Google Scholar 

  23. Stutzman J, Huang S, Williams RO, O’Brien J, O’Donnell KP, Delpon de Vaux SM. Processing thermally labile drugs by hot-melt extrusion: the lesson with gliclazide. Eur J Pharm Biopharm. 2017;119:56–67. https://doi.org/10.1016/j.ejpb.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  24. Castro GT, Filippa MA, Sancho MI, Gasull EI, Almandoz MC. Solvent effect on the solubility and absorption spectra of meloxicam: experimental and theoretical calculations. Phys Chem Liq. 2020;58(3):337–48. https://doi.org/10.1080/00319104.2019.1594224.

    Article  CAS  Google Scholar 

  25. Repka MA, McGinity JW. Influence of vitamin E TPGS on the properties of hydrophilic films produced by hot-melt extrusion. Int J Pharm. 2000;202(1–2):63–70. https://doi.org/10.1016/S0378-5173(00)00418-X.

    Article  CAS  PubMed  Google Scholar 

  26. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29. https://doi.org/10.1016/j.ijpharm.2006.08.010.

    Article  CAS  PubMed  Google Scholar 

  27. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: part I review article. Drug Dev Ind Pharm. 2007;22:909–26. https://doi.org/10.1080/03639040701498759.

    Article  CAS  Google Scholar 

  28. Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech. 2016;17(1):133–47. https://doi.org/10.1208/s12249-015-0425-7.

    Article  CAS  PubMed  Google Scholar 

  29. Ma X, Huang S, Lowinger MB, Liu X, Lu X, Su Y, et al. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: preparation and physical stability. Int J Pharm. 2019;561(March):324–34. https://doi.org/10.1016/j.ijpharm.2019.03.014.

    Article  CAS  PubMed  Google Scholar 

  30. ICH. Q3C(R6) Impurities: Guideline for residual solvents. ICH Harmonised Guideline 2016. https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf. Accessed 24 Aug 2021

  31. Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84. https://doi.org/10.1016/j.ijpharm.2012.07.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding for this project provided through a tripartite grant (USI 090) awarded by the Department for the Economy NI, Sciences Foundation Ireland, and the National Sciences Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Huckle.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagan, C., Huckle, J.E., Katz, J.M. et al. Solvent-Assisted Hot Melt Extrusion of a Thermally Labile, High Melting Point Compound. AAPS PharmSciTech 22, 235 (2021). https://doi.org/10.1208/s12249-021-02122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02122-7

KEY WORDS

Navigation